The Microwave Spectrum of Hydroxyacetonitrile

By J. K. Tyler*

(Chemistry Department, The University, Glasgow W.2)

and D. G. LISTER

(Laboratorio Spettroscopia Molecolare del C.N.R., Via Castagnoli, 1, Bologna, Italy)

Summary Microwave spectra are reported for $HO \cdot CH_2 \cdot CN$ and $DO \cdot CH_2 \cdot CN$; the O-H and $C \equiv N$ groups are found to adopt the *gauche* orientation with respect to each other.

RECENT microwave studies of prop-2-yn-1-ol^{1,2} and prop-2-yn-1-thiol³ have established that the most stable conformations are those in which the -OH or -SH bonds adopt the *gauche* orientation with respect to the acetylene groups.

Equivalent gauche forms. $X = C \equiv C-H$ or $C \equiv N$

In addition to the usual pure rotational transitions these molecules also exhibit torsion-rotation transitions via the μ_c component of the dipole moment and from these the lowest torsional separations have been found to be 21.49 and 0.230 cm⁻¹ for the alcohol and thiol respectively. Here we present a preliminary account of our microwave measurements on the related molecule hydroxyacetonitrile, HO·CH₂·CN, and its deuteriated derivative, DO·CH₂·CN.

HO·CH₂·CN was prepared by the method of Gaudry⁴ and DO·CH₂·CN was best made directly in the waveguide cell by exchange with D₂O vapour. All spectra were observed in a Stark modulation spectrometer at room temperatures. Transitions due to both μ_a and μ_b dipole components were measured for the vibrational ground states and for the first excited torsional states of both HO·CH₂·CN and DO·CH₂·CN. A selection of the measured lines is given in Tables 1 and 2.

TABLE 1

Measured line frequencies (in MHz) for HO·CH₂·CN

	V = 0	V = 1
$1_{01} \leftarrow 0_{00}$	$9217 \cdot 40$	$9213 \cdot 10$
$l_{11} \leftarrow 0_{00}$	37973·88	37998.11
$l_{10} \leftarrow l_{01}$	$29218 \cdot 47$	29244.34
$2_{02} \leftarrow 1_{01}$	$18429 \cdot 22$	18420.69
$2_{12} \leftarrow 1_{11}$	$17972 \cdot 85$	17969.12
$2_{11} \leftarrow 1_{10}$	18896.70	18887.71
$2_{11} \leftarrow 2_{02}$	$29685 \cdot 90$	29711.30
$3_{03} \leftarrow 2_{02}$	$27629 \cdot 91$	27616.93
$3_{13} \leftarrow 2_{12}$	$26955 \cdot 75$	$26950 \cdot 29$
$3_{12} \leftarrow 2_{11}$	$28341 \cdot 39$	$28327 \cdot 65$
$3_{12} \leftarrow 3_{03}$	30397.33	$30422 \cdot 23$

TABLE 2

Measured line frequencies (in MHz) for DO·CH₂·CN

	V = 0	V = 1
$1_{01} \leftarrow 0_{00}$	8988-88	8985-65
$1_{11} \leftarrow 0_{00}$	$34912 \cdot 96$	
$l_{10} \leftarrow l_{01}$	$26389 \cdot 51$	$26396 \cdot 51$
$2_{02} \leftarrow 1_{01}$	17971.45	17965.30
$2_{12} \leftarrow 1_{11}$	17513.76	17510.73
$2_{11} \leftarrow 1_{10}$	18444.36	18436.05
$2_{11}^{} \leftarrow 2_{02}^{}$	$26862 \cdot 35$	$26867 \cdot 32$
$3_{03} \leftarrow 2_{02}$	26941.68	$26932 \cdot 81$
$3_{13} \leftarrow 2_{12}$	$26266 \cdot 62$	$26262 \cdot 14$
$3_{12} \leftarrow 2_{11}$	27662.06	$27650 \cdot 18$
$3_{12} \leftarrow 3_{03}$	27582.77	27584.65

 $^{14}\mathrm{N}$ quadrupole fine structure has been resolved in the $l_{01} \leftarrow 0_{00}$ transitions of HO·CH₂·CN and yields a value of -3.63 MHz for the tensor component χ_{aa} in the ground vibrational state. The rotational constants derived from low J lines on a rigid rotor basis are given in Table 3 and consideration of these immediately confirms that the

- ¹ K. Bolton, N. L. Owen, and J. Sheridan, Nature, 1968, 217, 164.
- ² R. Bolton, N. D. Spectroscopy, 1968, 26, 335.
 ³ K. Bolton and J. Sheridan, *Spectrochim. Acta.* 1970, 26A, 5, 1001.
 ⁴ R. Gaudry, Org. Synth., 1955, Coll. Vol. III, 436.
 ⁵ G. Cazzoli, A. M. Mirri, and D. G. Lister, to be published.

gauche conformation is also the favoured one here. Thus the quantity $I_{\rm C} - I_{\rm A} - I_{\rm B}$ is calculated to be -4.0256a.m.u. Å² for the ground vibrational state and -4.0669a.m.u. Å² for the first excited torsional state. These figures may be compared to the value estimated for the cis or trans forms which is $-3\cdot 2$ a.m.u. Å². The substitution co-ordinates of the hydroxy-proton (a = 1.437, b = 1.002, c = 0.671 Å for V = 0) further substantiate the gauche conformation.

TABLE 3

Rotational constants	(in MHz)	HO.CH	·CN

	V = 0	V = 1
Α	33596.18	$33621 \cdot 23$
В	4839.66	4836 ·20
С	4377.74	4376 .90
DO·CH ₂ ·CN		
A	$30651 \cdot 24$	30658.01
В	4727.09	$4724 \cdot 16$
С	4261.79	4261.50

Recently the direct torsion-rotation μ_c transitions in $\mathrm{DO}\text{\cdot}\mathrm{CH}_2\text{\cdot}\mathrm{CN}$ have been observed⁵ near 16.8 GHz and an approximate treatment of frequency perturbations in the $J_{1,J-1} \leftarrow J_{0,J}, \mu_{\rm b}, Q$ -branch lines of $\rm HO \cdot CH_2 \cdot CN$ indicates that the lowest torsional splitting here is in the region of 3-5 cm⁻¹. It is thus very probable that the cis-gauche barrier in hydroxyacetonitrile is rather higher than the 90 cm⁻¹ reported for prop-2-yn-1-ol.²

We thank the S.R.C. and the Royal Society for supporting D.G.L. in this work.

(Received, September 1st, 1971; Com. 1522.)