Electrochemical Synthesis of Compounds of General Formula (R¹CH2·CR²·Y)2

By M. CHKIR and D. LELANDAIS*

(Laboratoire de Chimie Organique Structurale, Faculté des Sciences, 8 Rue Cuvier, Paris Ve, France)

Summary The anodic oxidation of organic acids, R^1CO_2H , in the presence of substrates of the type $CH_2 = CR^2 \cdot Y$ (Y = CHO, COMe, CO_2Et , and CN) leads with good yields to duplication products of general formula $(R^1 \cdot CH_2 \cdot CR^2 \cdot Y)_2$.

OXIDATIVE addition of anions to organic substrates has been widely studied.¹ It is known that the anodic oxidation of certain anions of organic acids R¹CO₂H leads by a Kolbe reaction to R¹·R¹ duplication compounds, but the fixation

of the R¹ intermediate radical has so far been observed only in ethylenes, or dienes² or aromatic compounds.³

We used as substrates the compounds, $\mathrm{CH_2}{=}\mathrm{CR^2}{\cdot}\mathrm{Y}$ (Y=CHO, COMe, $\mathrm{CO_2}\mathrm{Et}$, or CN) in which the ethylenic double bonds are activated by the electron withdrawing groups Y.† The electrolysis was carried out in a diaphragm cell, the substrate being introduced only in the anodic compartment. A platinum sheet was used as anode at a potential of >2 V.⁴ The medium used was 8 N wateracetonitrile.

TABLE

Substrate	Anion	Products		Yield (%)
$CH_2 = C(Me)CHO$	$\begin{array}{l} \mathrm{McCO_2^-} \\ \mathrm{EtCO_2^-} \\ \mathrm{Pr^nCO_2^-} \\ \mathrm{(Me)_2CH\cdot CH_2CO_2^-} \end{array}$	$ \begin{aligned} &[\text{MeCH}_2\text{-C}(\text{Me})\text{CHO}]_2 \\ &[\text{Pr}^{\text{n}}\text{C}(\text{Me})\text{CHO}]_2 \\ &[\text{Bu}^{\text{n}}\text{C}(\text{Me})\text{CHO}]_2 \\ &[(\text{Me})_2\text{CH}\cdot(\text{CH}_2)_2\text{-C}(\text{Me})\text{CHO}] \end{aligned} $	2	80 80 70 50
	MeCO ₂ -	$[\mathrm{MeCH_2CHCOMe}]_2$	meso dl	25
$CH_2 = CH \cdot COMe$	CD ₃ CO ₂ -	$[{\rm CD_3CH_2CHCOMe}]_2$	ai meso dl	$egin{array}{c} 24 \\ 25 \\ 24 \\ \end{array}$
	Et·CO ₂ -	[Pr¤CHCOMe] ₂	ai meso dl	$\begin{array}{c} 24 \\ 24 \\ 24 \end{array}$
$CH_2 = C(Me)COMe$	MeCO ₂ -	$[MeCH_2 \cdot C(Me)COMe]_2$	meso dl	$\begin{array}{c} 56 \\ 20 \end{array}$
	CD₃·CO₂−	${\rm [CD_3CH_2C(Me)COMe]_2}$	meso dl	56 20
$CH_2 = CHCO_2Et$	MeCO ₂ -	$[\mathrm{MeCH_2\cdot CHCO_2Et}]_2$		70
$CH_2 = CH \cdot CN$	MeCO ₂ -	$[\mathrm{MeCH}_2\text{-}\mathrm{CHCN}]_2$	meso dl	48 52
Mixture of $CH_2=CH\cdot COMe$ and $CH_2=C(Me)CHO$	MeCO ₂ -	MeCH ₂ ·CHCOMe MeCH ₂ ·C(Me)CHO		23

[†] Ref. 26 indicates that a product from two methyl groups and two molecules of acrylonitrile had been obtained in attempts to initiate the electrochemical polymerisation of acrylonitrile in acetic acid. Present work allows us to assign a structure to this product.

The products (see Table) were studied by n.m.r. and mass spectrometry. Where two diastereoisomers were separated, structures were assigned by chemical means and by comparison with compounds of known configuration.

The generalisation of this reaction to other substrates is being studied. Reaction mechanisms will be discussed elsewhere.

(Received, July 9th, 1971; Com. 1179.)

- N. L. Weinberg and H. R. Weinberg, Chem. Rev., 1968, 68, 449; J. H. P. Utley, Ann. Reports, 1969, 66 B, 217; M. Y. Fioshi and L. A. Mirkind, Itogi Nauki, Elektrokhim., 1966, 114; H. Schäfer, Chem.-Ing.-Tech., 1970, 42, 164.
 W. B. Smith and H. G. Gilde, J, Amer. Chem. Soc., 1959, 81, 5325; S. Goldschmidt and E. Stockel, Chem. Ber., 1952, 85, 630; M. Y. Fioshin, L. A. Mirkind, and M. A. Khrizolitova, Zhur. Vsesoyuz. Khim. obshchim. D.I. Mendeleeva, 1970, 15 (2), 230.
 L. F. Fieser, R. C. Clapp, and W. H. Daut, J. Amer. Chem. Soc., 1942, 64, 2052; F. Fichter and H. Stenzel, Helv. Chim. Acta, 1939, 22, 970; S. Goldschmidt and M. Minsinger, Chem. Ber., 1954, 87, 956.
 N. Sato, T. Sekine, and K. Sugino, J. Electrochem. Soc., 1968, 115, 242.