The Formation of a Halogenocarbenoid of Zinc. A Novel Synthetic Route to Halogenocyclopropane Derivatives

By JUN NISHIMURA and JUNJI FURUKAWA*

(Department of Synthetic Chemistry, Kyoto University, Kyoto 606, Japan)

Summary 7-Fluoro-, 7-chloro-, 7-bromo-, or 7-iodonorcarane were obtained by the reaction of di-iodofluoromethane, dichloroiodomethane, dibromoiodomethane, or iodoform, respectively, with diethylzinc and cyclohexene.

WE have studied the formation and reaction of zinc carbenoids via the reaction of dialkylzinc and polyhalogenoalkane,¹ which seemed to provide a more versatile route than the Simmons-Smith method.² We report here the formation of 7-halogenonorcarane by the reaction of $ZnEt_2$ and polyhalogenomethane with cyclohexene. This is probably the first report on the chemistry of halogenocarbenoids of zinc, although Köbrich³ mentioned briefly the chlorocarbenoid of zinc in relation to lithium carbenoid.

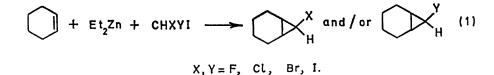
The procedure we used [reaction (1)] was similar to that reported previously.¹

 $CHFI_2$,⁴ CHBrClI,⁵ $CHCl_2I$,⁵ $CHClI_2$,⁵ $CHBr_2I$,⁵ and $CHBrI_2$ ⁵ were prepared by minor modifications of literature methods.

 CHF_2I was the most useful for the preparation of fluorocyclopropane, $CHCl_2I$ for the preparation of chlorocyclopropane, and $CHBr_2I$ for the preparation of bromocyclopropane. 7-Iodonorcarane was obtained in 10% yield as follows. To a stirred mixture of cyclohexene (5 ml) and $ZnEt_2$ (0.05 mol, 5 ml) under reflux, iodoform (0.05 mol, 19.7 g) suspended in cyclohexene (15 ml) was added. The physical properties (n.m.r., i.r., and mass spectra) of the 7-halogenonorcaranes except 7-iodonorcarane correspond with published values. The results are summarized in the Table.

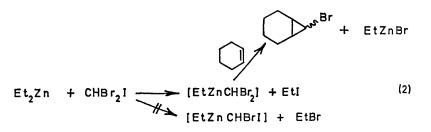
Table

Yields and isomer ratios for 7-halogenonorcaranes in the reaction of diethylzinc and polyhalogenomethane with cyclohexene^a

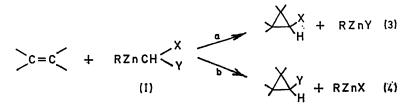

7-Halogenonorcarane

			Yieldb	Isomer ratio
Halide			(%)	(endo/exo)
••	••	\mathbf{F}	`ýı́´	5.7
••	••	Cl	52	2.1
		Cl	45	3.1
		Br	Trace	$2 \cdot 1$
		Ι	Trace	0.2
CHCII ₂		Cl	17	11.0
		Ι	1	2.6
		\mathbf{Br}	53	1.3
		Br	9	2.8
-		Ι	13	1.8
••	••	I	Trace	0.5
	··· ··· ···	··· ··		$\begin{array}{cccccccccccccccccccccccccccccccccccc$

^a Reaction conditions: Cyclohexene (10 ml), light petroleum (20 ml), halide (0.05 mol), Et_2Zn (0.05 mol); reaction temp., 25-35 °C; time, 2 h.


^b Based on the halide.

The reaction of cyclohexene (10 ml), $ZnEt_2$ (0.02 mole, 2 ml), and $CHBr_2I$ (0.036 mole, 10.9 g) was carried out at 25—35 °C. After 2 h the mixture was treated with aqueous


NH₄Cl and analysed by g.l.c. EtBr was not detected, but EtI and 7-bromonorcarane were obtained in 75 and 53%vield respectively based on the halide, together with small amounts of unknown products. This result suggests that $ZnEt_2$ reacts mainly with iodine in a polyhalogenomethane The yields of the 7-halogenonorcaranes suggest that halogen in the dihalogenomethylzinc compound undergoes α elimination with the zinc moiety in the order: I, Br > Cl> F.

The stereoselectivity (Table) is also of interest. endo-

to give an α -dihalogenozinc compound. This is supported by the fact that dihalogenomonoiodomethane afforded only small amounts of iodonorcarane.

Isomers of 7-fluoro-, 7-chloro-, and 7-bromo-norcarane were always formed predominantly over their exo-isomers. However, the selectivity of formation of 7-iodonorcarane

CHBrClI, CHClI2, or CHBrI2 afforded two (or three) 7-halogenonorcaranes, indicating that two halogen-substituted bivalent carbon species are transferred to the olefin from the dihalogenomethylzinc compound (I) generated by the reaction of ZnEt₂ and each of these halides.

depended upon the source of the iodocarbenoid. The endo-isomer was formed predominantly with $CHClI_2$ or CHBrI₂ (syn-selective formation); more exo-isomer formed with CHBrClI or CHI₃ (anti-selective formation).

(Received, July 22nd, 1971; Com. 1266.)

- ¹ J. Nishimura, J. Furukawa, N. Kawabata, and M. Kitayama, *Tetrahedron*, 1971, 27, 1799 and refs. cited therein. ² H. E. Simmons and R. D. Smith, *J. Amer. Chem. Soc.*, 1958, 80, 5323; 1959, 81, 4256; E. P. Blanchard and H. E. Simmons, *ibid.*, 1964, 86, 1337; H. E. Simmons, E. P. Blanchard, and R. D. Smith, *ibid.*, p. 1347.
 - ⁸G. Köbrich and H. R. Merkel, Chem. Ber., 1966, 99, 1782.
 - ⁴ O. Ruff, Ber. deutsch. chem. Ges., 1936, 69, 299.
 - ⁵ V. Auger, Compt. rend., 1908, 146, 1037.