Crystal Structure of Antimony Pentafluoride

By A. J. Edwards* and P. Taylor

(Chemistry Department, University of Birmingham, P.O. Box 363, Birmingham B15 2TT)

Summary Antimony pentafluoride is tetrameric in the solid state with octahedral co-ordination achieved by *cis*-fluorine bridging; in the tetramer there are two different Sb-F-Sb angles of 170° and 141°.

THE structures of transition metal pentafluorides are well established. Two of the three structure types found for these compounds are tetrameric arrangements, one¹ with approximately linear fluorine bridges, and the other² with angular bridges (M-F-M *ca.* 135°). The third type³ is a

zigzag endless chain arrangement with *cis*-fluorine bridges. Antimony pentafluoride has been shown to be polymeric

in the liquid phase⁴ and it has been assumed to have a similar structure in the solid phase to the transition metal pentafluorides.

Single crystals of antimony pentafluoride were prepared by vacuum sublimation at 6° in Pyrex capillaries and diffraction data were determined by Weissenberg techniques at this temperature. The unit cell dimensions are closely related to those of niobium pentafluoride,¹ with a doubling of the *a* axis (Table).

Compound		а	Ь	c/Å	ß°	$U/Å^3$	Z	$D_{\mathbf{c}}$	Space
$_{\mathrm{SbF}_{5}}^{\mathrm{NbF}_{5}}$	Monoclinic Monoclinic	9·62 19·00	14·43 14·10	$5.12 \\ 5.29$	96·1 94·0	706 1414	8 16	$3.54 \\ 4.07$	$\begin{array}{c} { m group} \ C2/m \ B2_1/m \end{array}$

Intensity data, collected using Mo- K_{α} radiation and determined photometrically, gave 525 independent reflections. The antimony atom positions were determined from the three-dimensional Patterson function and all fluorine atom positions from a subsequent electron density map. Full-matrix least-squares refinement of positional and isotropic temperature parameters has given an R value of 0.12.

The atomic arrangement is illustrated in the Figure. In

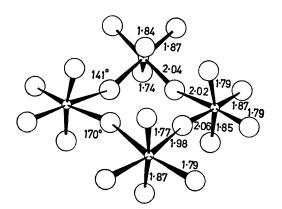


FIGURE Estimated standard deviations are ± 0.05 Å and $\pm 3^{\circ}$.

the tetrameric unit the antimony atoms are linked by cis-bridging fluorine atoms, with the terminal fluorine atoms

- ¹ A. J. Edwards, J. Chem. Soc., 1964, 3714.

- ² J. H. Holloway, R. D. Peacock, and R. W. H. Small, J. Chem. Soc., 1964, 644.
 ⁸ A. J. Edwards and G. R. Jones, J. Chem. Soc., (A), 1969, 1651.
 ⁴ C. J. Hoffman, B. E. Holder, and W. L. Jolly, J. Phys. Chem., 1958, 62, 364.
 ⁵ J. H. Canterford and R. Colton, 'Halides of the Second and Third Row Transition Metals', Wiley, New York, 1968, p. 19.

1377

(terminal) and Sb-F(bridge) distances, the average values of which are 1.82 and 2.02 Å respectively. In contrast to all the other pentafluoride structures the bridge angles are not the same. There are two angles of 170°, similar to the angles of 177° in the niobium pentafluoride structure,¹ and two of 141°, similar to the average angle of 132° in the ruthenium pentafluoride structure.² (The halves of the tetramer are related by the mirror plane of the space group).

The niobium pentafluoride structure corresponds approximately to a cubic close packing of fluorine atoms, with metal atoms occupying one fifth of the octahedral holes,¹ whereas the ruthenium pentafluoride structure corresponds to a hexagonal close packed arrangement.² The structure of antimony pentafluoride can be described in terms of an ordered combination of cubic and hexagonal close packed layers of fluorine atoms. The bridge angle of 170° can be correlated with the occupation of adjacent octahedral holes in cubic close packing (theoretical angle 180°), and the angle of 141° with the corresponding situation in hexagonal close packing (theoretical angle 132°).

It has been suggested that the different structures adopted by pentafluorides, and their different bridge angles, can be explained⁵ on the basis of slight fluorine-to-metal π -bonding. It is difficult to reconcile this idea with the present structural arrangement.

We thank Procter and Gamble Ltd. for a grant (to P.T.).

(Received, September 7th, 1971; Com. 1571.)