Infrared Spectroscopic Evidence for Molecular Tin(IV) Oxide (SnO₂)

By J. S. Anderson, A. Bos,* and J. S. Ogden

(Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR)

Summary Molecular tin(IV) oxide (SnO_2) has been formed in a krypton matrix by reaction of the elements; isotopic splitting in the i.r. spectrum suggests that it is isostructural with carbon dioxide.

APART from the well known linear molecule carbon dioxide, the simple triatomic Group IV dioxides are not well characterized. Small concentrations of silicon dioxide have been observed by mass spectrometry in the vapour over heated silica¹ and the electric deflection experiments of Klemperer *et al.*² suggest that this molecule is linear. However, the corresponding species GeO₂, SnO₂, and PbO₂ do not appear to have been observed. We present evidence that molecular tin(**i**v) oxide is formed when tin atoms are co-condensed at

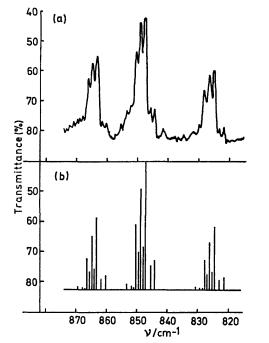


FIGURE (a) Observed i.r. spectrum of SnO_2 with ¹⁸O enrichment; (b) calculated spectrum.

low temperatures in a krypton matrix containing a few mol % of oxygen.

Mass spectrometric work on the vaporization of tin oxides³ has shown that the species SnO, Sn₂O₂, Sn₃O₃, and Sn_4O_4 are all present in the vapour phase, and the i.r. spectra of these molecules have been obtained using the technique of matrix isolation.⁴ The apparatus used for this work has been described elsewhere.⁵ When tin atoms were condensed at 16 K in a matrix of 90% Kr and 10% O₂, a new i.r. band was observed at 863.1 cm⁻¹ in addition to peaks characteristic of SnO and its polymers.⁴ Under high resolution, this new band was resolved into seven components, the intensities of which reflected the isotopic abundances expected for a molecule containing one atom of tin. When the experiment was repeated using ¹⁸O labelling (90% Kr, 2.2% 16O2, 5.3% 16O18O, and 2.5% 18O2), two additional bands were observed at 847.2 and 824.7 cm⁻¹. Under high resolution, the fine structure of these bands again indicated that there was a single tin atom in the molecule. The Figure shows both the basic triplet pattern observed on ¹⁸O enrichment and the multiplet splitting on each band due to the tin isotopes. The observed frequencies are listed in Table 1.

The basic triplet pattern indicated that the molecule contained two equivalent atoms of oxygen, and the bands were thus assigned to molecular SnO_2 with symmetry C_{2v} or $D_{\infty h}$. No other bands were observed which could be assigned to this species. If the molecule were linear, the symmetric stretch v_1 would not be active in the i.r., and although the bending frequency v_2 would be i.r. active, it could well lie below the limit of our spectrometer. The observed band would thus be identified as the antisymmetric stretch v_3 . For a C_{2v} structure, v_1 is active, but is expected to be much less intense than v_3 . The observed band was therefore assigned as v_3 for either symmetry.

For a C_{2v} or $D_{\infty h}$ structure, the ratio of the antisymmetric vibration frequencies on symmetric isotopic substitution is given by equation (1),⁶ where ω is the zero order frequency,

$$\omega_3/\omega_{3i} = [(\mu_0 + 2\mu_{g_n} \sin^2 \alpha)/(\mu_0 + 2\mu_{g_n} \sin^2 \alpha)_i]^{\frac{1}{2}}$$
(1)

 μ_0 and μ_{sn} are the reciprocal masses of oxygen and tin respectively, 2α is the angle $\angle OSnO$, and the subscript "i" refers to the isotopically substituted molecule. If anharmonic corrections and matrix shifts are small, the zero

TABLE 1 Observed frequencies (cm⁻¹) and suggested assignments of peaks observed for matrix isolated SnO_2

Tin isotopes	116	117	118	119	120	122	124
Oxygen/oxygen isotopes							
16/16 16/18 18/18	$\begin{array}{c} 866 \cdot 1 \\ 850 \cdot 2 \\ 828 \cdot 0 \end{array}$	865·1 sh 849·2 sh 827·0 sh	864·6 848·7 826·3	863·6 sh 847·6 sh 825·2 sh	$863 \cdot 1 \\ 847 \cdot 2 \\ 824 \cdot 7$	$861.5 \\ 845.6 \\ 823.1$	$860 \cdot 1 \\ 844 \cdot 3 \\ 821 \cdot 6$

Absolute frequency accuracy, ± 0.3 cm⁻¹; relative frequency accuracy, ± 0.1 cm⁻¹.

(2)

(3)

¹⁸O¹²⁰Sn¹⁸O, the principal Sn–O force constant F_r and the

interaction constant F_{rr} may be calculated, using standard expressions, 6,8 giving equations (2) and (3). In particular,

 $F_r = 536.3 \pm 0.2 \text{ N m}^{-1}$

 $F_{rr} = -18.1 \pm 0.2 \text{ N m}^{-1}$

the value for F_r may be compared with the value of the

force constant⁹ in gaseous diatomic ¹²⁰Sn¹⁶O of 562·3 N m⁻¹.

(Received, August 26th, 1971; Com. 1496.)

Financial support from the S.R.C. is acknowledged.

TABLE 2

0	bserved	and	calcui	ated	frequency	ratios .	for	isotopic	SnO	2 species	
---	---------	-----	--------	------	-----------	----------	-----	----------	-----	-----------	--

		Observed	Observed	Calculated ratio		
Molecules		frequency (cm ⁻¹)	ratio	For $D_{\infty h}$	For C_{2v} , $\alpha = 75^{\circ}$	
Pair 1	¹⁶ O ¹²⁰ Sn ¹⁶ O	863-1	1.0466	1.0470	1.0477	
	¹⁸ O ¹²⁰ Sn ¹⁸ O	824.7	1.0400	1.0470		
Pair 2	¹⁶ O ¹¹⁶ Sn ¹⁶ O	866-1	1·0069.	1.00706	1.00000	
	¹⁶ O ¹²⁴ Sn ¹⁶ O	860.1	1.00098	1.00706	1.00668	
Pair 3	¹⁸ O ¹¹⁶ Sn ¹⁸ O	828.0	1.0077	1.00774	1.00788	
	¹⁸ O ¹²⁴ Sn ¹⁸ O	821.6	1.00779	1.00774	1.00733	

order frequencies (ω) may be approximated⁷ by the observed frequencies (v) in this expression. In Table 2 we have compared the ratio of the observed frequencies of selected pairs of molecules with the ratio calculated firstly for the $D_{\infty h}$ structure, and secondly for a C_{2v} structure with $\angle OSnO = 150^{\circ}$ ($\alpha = 75^{\circ}$). For pair 1 the calculated ratio increases for a decrease in angle 2α ; the observed ratio is slightly less than predicted for a linear SnO₂. For pairs 2 and 3 the observed ratios are very close to those expected for a linear molecule. Like CO2 and SiO2, the SnO2 molecule thus appears to be linear.

From the frequencies observed for the three isotopically ¹⁶O¹²⁰Sn¹⁶O, ¹⁶O¹²⁰Sn¹⁸O, and substituted molecules,

¹ R. F. Porter, W. A. Chupka, and M. G. Inghram, J. Chem. Phys., 1955, 23, 216. ² M. Kaufman, J. Muenter, and W. Klemperer, J. Chem. Phys., 1967, 47, 3365. ³ R. Colin, J. Drowart, and G. Verhaegen, Trans. Faraday Soc., 1965, 61, 1364; J. Drowart and P. Goldfinger, Angew. Chem. Internat. Edn., 1967, 6, 581. ⁴ J. S. Orden and M. Bicke, J. Chem. Phys., 1071, 52, 666.

⁴ J. S. Ogden and M. J. Ricks, *J. Chem. Phys.*, 1971, **53**, 896. ⁵ J. S. Anderson and J. S. Ogden, *J. Chem. Phys.*, 1969, **51**, 4189.

⁶ G. Herzberg, "Infrared and Raman Spectra of Polyatomic Molecules", Van Nostrand, New York, 1959.
⁷ J. W. Hastie, R. Hauge, and J. L. Margrave, J. Inorg. Nuclear Chem., 1969, **31**, 281.
⁸ J. L. Griggs, jun., K. N. Rao, L. H. Jones, and R. M. Potter, J. Mol. Spectroscopy, 1965, **18**, 212.
⁹ G. Herzberg, "Molecular Spectra and Molecular Structure", Van Nostrand, New York, 1959, vol. 1.