Application of a Lanthanide Shift-reagent for Conformational and Configurational Assignment in the Carbohydrate Field

By DEREK HORTON^{*} and J. KENETH THOMSON

(Department *of* Chemistry, The Ohio State University, *Columbus,* Ohio 43210)

Summary The paramagnetic shift-reagent, tris- $(2,2,6,6$ **tetramethylheptanedionato)europium(HI),** was used to resolve the n.m.r. spectrum of methyl 2,3,6-trideoxy- α -D-erythro-hexopyranoside (methyl α -amicetoside, 1); the extreme spectral dispersion thus effected permitted determination of the conformation of **(1)** in solution and the configuration of a **2,3-dideuterio-derivative (2),** and allowed the differentiation of a pair of 4-C-ethynyl derivatives *(5* and **6)** obtained from **(1).**

THE lanthanide shift-reagent tris- $(2,2,6,6$ -tetramethylheptanedionato)europium(III) [Eu(dpm)₃] introduced by Hinckley¹ is useful for the interpretation of complex 1 H n.m.r. spectra.2 Work in this laboratory on the massspectral fragmentation of the methyl glycoside of amicetose (a component deoxy-sugar of the antibiotic amicetin) has made available this glycoside, methyl $2,3,6$ -trideoxy- α n-erythvo-hex~pyranoside~ **(1)** , having specific deuterium labelling at C-2 and C-3 **(2),** at C-4 **(3),** and at C-6 **(4).**

Also prepared, by ethynylation of the 4-ketone obtained by oxidation of **(l),** was a pair of 4-epimeric C-ethynyl derivatives. By conventional n.m.r. spectroscopy at 60 or 100 MHz only gross spectral assignments for these derivatives were possible; the very small differences in chemical shift between certain protons exhibiting strong vicinal or geminal couplings led to second-order effects that precluded detailed assignments interpretable in terms of stereochemistry and conformation. Thus the stereochemistry of the isotopic labelling in **(2),** obtained by reduction of an alkene precursor with deuterium, was not established, nor were the ethynyl derivatives *(5)* and **(6)** individually differentiated. The determination of configuration at tertiary hydroxy-groups, as encountered in branched-chain sugars of the type *(5)* and *(6)* and the similar problem of assigning anomeric configuration in ketoses, is difficult, since n.m.r. spectral techniques based on proton-proton spin-couplings are not applicable. The present report illustrates the use of the shift-reagent $Eu(dpm)_3$ in the elucidation of stereochemical detail; with a 60 MHz n.m.r. spectrometer it was possible to establish the position of deuterium labelling in **(2),** to differentiate the branchedchain derivatives *(5)* and **(6),** and to assign the favoured conformations in solution for each of the derivatives.

The upper spectrum in the Figure is the 60 MHz n.m.r. spectrum of the glycoside **(1)** in carbon tetrachloride; the gross assignments shown are the only ones readily made. Studies at higher field-strengths and with different solvents did not give much additional information. However, when a 0.4 molar equivalent of $Eu(dpm)_3$ was added to the solution, the 60 MHz spectrum recorded in the lower part of the Figure was observed. The reagent evidently complexes with 0-4 and, by a proximity effect, causes displacement of the **4-H** signal to extremely low field; similar displacements of progressively smaller magnitude are observed for the signals of 5-H, 3a-H, 3e-H, and 6-H. The remaining signals, those of 1-H, 2a-H, 2e-H, and the methoxy-group, are shifted somewhat downfield, but are not significantly dispersed. The first-order approximation can be used to determine spin couplings between 3a-H, 3e-H, 4-H, and 5-H, and these values are consistent with the expected Cl(D) conformation for **(l),** having **4-H** axial $(J_{4,5}$ 9, $J_{3a,4}$ 11 Hz). The signal assigned to $4-H$ was absent in the spectrum of the 4-deuteriated derivative **(3),** and the signal assignments made for 3a-H, 3e-H, and 5-H were confirmed by observing the expected changes in signal multiplicities, use of the 6-deuteriated derivative **(4)** gave additional confirmation of the 5-H assignment

FIGURE $0.4M$ -Eu(dpm)₃ *The* **60** *MHz spectra of* **(1)** *zn* CCl,, **A,** *alone, B, wzth*

In the spectrum of the dideuteriated derivative **(2),** the higher-field 3-H signal **(3e-H)** was absent, and the 3a-H signal decreased in width from 41 to ca **17** Hz (by the magnitude of the $3e, 3a$ -H geminal and $2a, 3a$ -H vicinal proton-proton couplings), and the $2e, 2a$ -H multiplet decreased in intensity by one proton Assuming that the catalytic reduction step used in preparing **(2)** proceeds by cis-addition, it is evident that reduction of the alkene precursor by deuterium takes place stereospecifically from the "top" side of the molecule Compound **(2)** can thus be formulated as methyl **2,3,6-trideoxy-2,3-dideuterio-cc-~** mannopyranoside

One of the two C-4 epimeric acetylenic derivatives, m p 103°, $[\alpha]_D$ +177° (CHCl₃), gave an n m r spectrum in carbon tetrachloride containing $0 4M-Eu(dpm)$, that was almost identical with that observed for the glycoside **(1)** except that no signal corresponding to 4-H was observed, and the signal multiplicities for 3a-H, 3e-H, and **5-H** reflected the absence of 4-H, accordingly, structure (5), having 0-4 disposed as in **(l),** was assigned to this isomer In contrast, the other ethynyl derivative, a syrup having $[\alpha]_D + 132^\circ$ (CHCl₃), showed an altogether different spectrum in carbon tetrachloride containing 0.4 ^M-Eu(dpm)₃, the relative order **of** signal shifts (when compared with the spectrum in carbon tetrachloride alone) was $6-H \approx 3e$ -H $> 5-H > 3a-H$, and the structure (6) can thus be assigned to this isomer These assignments agree with those made by converting *(5)* and **(6)** into their alditols, treating the latter with phenyl azide, and applying a rule⁴ relating optical rotation with chirality of the tertiary centre in the resultant 2,3,6-trideoxy-4- (l-phenyltriazol-4-y 1) hexitols

(1) has the $CI(D)$ conformation before $Eu(dpm)_3$ is added to the solution However, for systems where a mobile $conformational$ equilibrium might be expected, 5 care should be exercised to ensure that the possible contribution of the complexing agent in influencing the conformation is recognized

This work was supported by the National Institutes of Health, U S Public Health Service

(Recezved, August 6th) **1971,** *Corn* 1369)

1 C C Hinckley, *J Amer Chem SOC* , **1969,91, 5160,** *J Org Chem* , **1970,35, 2834**

²J K M Sanders and D H Wilhams *Chem Comm* , **1970, 422,** G H Wahl, jun., and M. R Peterson, jun , *zbzd* , p **1167,** P V ² J K M Sanders and D H Williams Chem Comm, 1970, 422, G H Wahl, Jun., and M. R Peterson, jun., ibid., p 1167, P V
Demarco, T K Elzey, R B Lewis, and E Wenkert, J Amer Chem Soc, 1970, 92, 5734, 5739, I Armitage and L D **333**

³E L Albmo and I1 Horton, *J Org Chew* , **1969, 34, 3519** 4 H El Khadem and 2 M El-Shafei, *Tetrahedron Letters,* **1963, 1887**

5 P L Durette and D Horton, *Adv Carbohydrate Chem Bzochem* , **1971, 26, 49**