Cyclohexane Fatty Acids from a Thermophilic Bacterium

By M. DE ROSA, A. GAMBACORTA, and L. MINALE

(Laboratorio per la Chimica e Fisica di Molecole di Interesse Biologico del C.N.R., Via Toiano 2, Arco Felice-Naples, Italy)

and J. D. Bu'Lock*

(Microbial Chemistry Laboratory, Department of Chemistry, University of Manchester, Manchester M13 9PL)

Summary In the saponifiable lipids of Bacillus acidocaldarius the principal components are 11-cyclohexylundecanoic and 13-cyclohexyltridecanoic acids.

Ir has been suggested that in thermophilic bacteria a major contribution to thermostability is made by membrane structures¹ and in this connection the composition of cell lipids in such organisms is of obvious interest. An isolate now identified with the *Bacillus acidocalderius* of Brock¹ comes from a very extreme environment (high temperature, low pH) and its lipids are under investigation. The characterization of pentacyclic triterpenes from the non-saponifiable fraction has already been reported.²

The lipid extract from cells grown on 0.1% glucose-0.1% veast extract-mineral salts, adjusted to pH 3.0 with H₂SO₄ and incubated at 64°, following saponification and methylation, contained exclusively saturated esters (as shown by chromatography on SiO₂-AgNO₃). G.l.c. of the mixture (10% diethyleneglycol succinate at 220°) showed two unusual esters as the major components, together with about 25% of the more common iso-C₁₇ and anteiso-C₁₇ esters, about 5% of iso-C₁₈, and traces of n-C₁₄, iso- and anteiso-C₁₅, n-C₁₆, n-C₁₇, and n-C₁₈ esters. The two major esters had equivalent chain lengths, on this column, of 19.15 (27%) and 21.15 (31%).

Larger-scale g.l.c. gave samples of both esters, $C_{18}H_{34}O_{2}$

(liquid at 15°) and $C_{20}H_{38}O_2$ (m.p. 28°) (both monocyclic since not unsaturated). The n.m.r. spectra of each revealed the absence of C-Me and an 11—13 proton signal at δ 1.65 consistent with a terminal cyclopentyl or cyclohexyl structure (the β -CH₂ group of fatty acid esters also resonates in this region). In the i.r. spectra bands at 842, 890, and 1455 cm⁻¹, not found in normal fatty acid esters, could be interpreted similarly.

For methyl 11-cyclohexylundecanoate, from a very minor component of butter-fat, g.l.c. and spectroscopic data very similar to our own for the lower homologue have been established,³ whereas the equivalent chain length of a cyclopentyl analogue, methyl dihydrochaulmoograte, was 19.85 on our column. A sample of synthetic methyl 11-cyclohexylundecanoate[†] proved undistinguishable from the lower homologue in our hands, and the higher homologue must be the 13-cyclohexyltridecanoate.

The lower homologue also occurs at about 3% of the fatty acids in a rumen bacterium,⁴ but in *B. acidocal*darius the two cyclohexyl acids can comprise as much as 65%, e.g. from cultures grown at 50° and pH 2, or 70° and pH 5. The distribution of these acids in other bacterial species might prove to be taxonomically significant; meanwhile their biosynthesis is under investigation.

(Received, June 21st, 1971; Com. 1019.)

¹ T. D. Brock, Science, 1967, 158, 1012; G. Darland and T. D. Brock, J. Gen. Microbiol, 1971, 67, 9.

- ² M. de Rosa, A. Gambacorta, L. Minale, and J. D. Bu'Lock, Chem. Comm., 1971, 619.
- ³ J. C. M. Shogt and P. H. Bergemann, J. Lipid Res., 1965, 6, 466.
- 4 R. P. Hansen, Chem. and Ind., 1967, 39.

[†] Kindly donated by Professor G. I. Huijben.