The Mechanism of Aromatization of Some Epoxyhydroxysteroids

By J. R. Hanson

(The School of Molecular Sciences, University of Sussex, Brighton BN1 9QJ)

Summary The 17β -acetoxy-4,5-epoxyandrostan- 3β -ols have been shown to yield 17β -acetoxy-4-methyloestra-1,3,5-triene by a dienol-benzene pathway.

The formation of aromatic steroids by reactions which are related to the dienol-benzene rearrangement has recently received attention. Thus 5α -hydroxy- 2α , 3α -epoxyandrostanes rearrange to form 4-methyloestra-1,3,5-trienes. Both 17β -acetoxy- 4α , 5α -epoxyandrostan- 3β -ol (I) and the

corresponding 4β ,5 β -epoxide afford 17β -acetoxy-4-methyloestra-1,3,5-triene (II; $R=H_2$) as the major aromatic product on treatment with HBr in glacial acetic acid under

- ¹ J. R. Hanson and T. D. Organ, J. Chem. Soc. (C), 1970, 513.
- ² J. Libman and Y. Mazur, Chem. Comm., 1971, 729.
- ³ J. R. Hanson, *Chem. Comm.*, 1970, 1119. ⁴ D. N. Kirk and V. Petrow, *J. Chem. Soc.*, 1960, 4664.

reflux. Even 3β -acetoxy- 5α , 6α -epoxyandrostan-17-one affords some 4-methyloestra-1,3,5-trien-17-one under these conditions although no attempt has yet been made to optimize the reaction. On the other hand similar treatment of 3β , 17β -diacetoxy- 4α , 5α -epoxyandrostan-11-one (III) gives only a poor yield of 17β -acetoxy-4-methyloestra-1,3,5-trien-11-one (II; R = O), the 11-oxo-group destabilizing as in the dienone-phenol reaction, 4 the formation of the spirocyclic cation.

Two pathways may be envisaged for this reaction. One, a modification of the Westphalen rearrangement, involves the methyl group migrating first to C-5 and then to C-4. The other involves a spirocyclic intermediate as in the dienol-benzene rearrangement in which it is the 9,10-bond which migrates. 17β -Acetoxy- 3α -deuterio- 4β , 5β -epoxy-androstan- 3β -ol was prepared and rearranged. This gave 1-deuterio-4-methyloestra-1,3,5-trien- 17β -yl acetate which showed an n.m.r. spectrum identical to that of the aromatization product from 17β -acetoxy- 3α -deuterio- 3β -hydroxy-androsta-1,4-diene. In particular multiplets at τ 3.07 (1H) and 3.19 (2H) in the undeuteriated compound were replaced by a singlet at 3.19 (2H) in the deuteriated products. Had the modified Westphalen pathway been involved, then the hydroxy-epoxide would have given a 3-deuterio-4-methyl aromatic product.

The hydroxy-epoxides are readily prepared from testosterone and the sequence thus provides a simple alternative route to the oestra-1,3,5-trienes.

(Received, September 3rd, 1971; Com. 1544.)