Crystal Structure of the Complex of Palladium with Biacetylbis(N-methyl,N-phenyl)osazone

By G. BOMBIERI,^a* L. CAGLIOTI,^b L. CATTALINI,^c E. FORSELLINI,^a F. GASPARRINI,^a R. GRAZIANI,^d and P. A. VIGATO^a (^a Laboratorio di Chimica e Tecnologia dei Radioelementi del C.N.R., Padova; ^b Università di Roma; ^c Università di Messina; ^d Università di Venezia, Italy)

Summary In the title compound, the biacetyl bis-(*N*-methyl,*N*-phenyl)osazone acts as a tridentate ligand, the nitrogen atoms bonding *via* the lone pairs.

PALLADIUM(II) complexes with osazones have been prepared and characterized.¹ The complexes of the type $Pd(L)Cl_2$, when L = cyclohexane-1,2-dione bisphenylhydrazone and biacetyl bisphenylhydrazone, undergo hydrogen chloride elimination when passed down a silica-gel column, producing dimers of the type $Pd_2(L-H)_2Cl_2$, containing Pd-N covalent bonds. It is therefore surprising that the complex with biacetyl bis-(*N*-methyl,*N*-phenyl)hydrazone, which does not contain an N-H group, undergoes hydrogen chloride elimination under the same experimental conditions. The complex $Pd(L)Cl_2$, prepared as described previously was dissolved in CH_2Cl_2 and passed down a silica gel column, and eluted with CHCl₃. A red crystalline compound was obtained by crystallization from CH_2Cl_2 -cyclohexane and the elemental analysis corresponds to the formula Pd(L-H)Cl.

The complex crystallises in the orthorhombic system, space group $P2_12_12_1$ with a = 24.88(1), b = 7.69(1), c = 9.47(1) Å, $D_{\rm m} = 1.67$, $D_{\rm x} = 1.68$ g cm⁻³ and Z = 4. A total of 1117 independent reflections measured out to a value of $\theta = 60^{\circ}$, only 788 of which had intensities significantly above background, were recorded on a Siemens A.E.D. using a 5-point measuring routine. The structure was solved by the heavy-atom method. Least-squares refinement with anisotropic temperature factors for Pd and Cl atoms and isotropic temperature factors for all other non-hydrogen atoms has reached a conventional R factor of 0.083. The stereochemistry of the complex and some bond-length and bond-angle data are shown in the Figure. Mean standard deviations for bond distances between light atoms are 0.03 Å.

The palladium atom lies in a slightly distorted squareplanar environment and bonds to the ligand biacetyl bis-(N-methyl, N-phenyl)osazone, which acts as a tridentate ligand, with the metal bonded to an ortho-carbon of one phenyl group and with two further nitrogens, thus forming two adjacent five-membered rings. The structure confirms that the nitrogen atoms bond through the lone pair as found for the azoarene complexes² rather than through the π -electron system as previously suggested.³ The length of the Pd-N(3) bond, which is trans to the σ -bonded aryl, is significantly greater than that *trans* to the chlorine. This is probably a consequence of the large trans influence of a σ -bonded carbon atom.

Apart from the unchelated phenyl group and the methyl group linked to N(4), the molecule is nearly planar. This favours a mesomeric effect extended to the entire system, resulting from the short N-N, N-C, and C-C distances. With regard to the metal-carbon bond [1.94(2) Å], a partial π -contribution in addition to the σ -character should not be excluded, on account of the possibility of overlap between the d(filled) metal orbitals and the π -electron cloud of the aromatic ring.

Preliminary results of a parallel investigation on the physicochemical properties of the complex are consistent

¹ L. Caglioti, L. Cattalini, M. Ghedini, F. Gasparrini, and P. A. Vigato, submitted to J. Chem. Soc.

- ² A. C. Cope and R. M. Sickman, J. Amer. Chem. Soc., 1965, 87, 3272.
 ³ J. P. Kleimann and M. Dubeck, J. Amer. Chem. Soc., 1963, 85, 1544.

with the structure shown. In fact, i.r. data indicate the presence of only one Pd-Cl stretching vibration; ¹H n.m.r. data indicate the presence in the molecule of only nine aromatic hydrogens. The molecular weight is that of a monomeric species. Moreover the reaction with PPh_3 does not result in the displacement of the original ligand L.

We thank Mrs. M. Magnabosco and Mr. F. Benetollo for helpful assistance in data reduction.

(Received, September 23rd, 1971; Com. 1671.)