Metal Ligand Bond Contraction and Possible Spin–Orbit Induced Jahn–Teller Distortion in the Iron(III) Dialkyldithiocarbamate 'Crossover' System

By P. C. HEALY and A. H. WHITE*

(Department of Physical and Inorganic Chemistry, University of Western Australia, Nedlands 6009, Western Australia)

Summary Comparison of the crystal structures of highand low-spin iron(III) dialkyldithiocarbamate complexes, $[Fe(CS_2 \cdot NR_2)_3]$, reveals (a) the predicted difference (0·1 Å) in metal-sulphur bond length and (b) an unusual distortion from D_3 to C_3 symmetry in the low-spin complex, attributed to spin-orbit interactions in the ground state.

TEMPERATURE dependent studies of the magnetic moment μ (B.M.) of tris-(NN-dialkyldithiocarbamato)iron(III) complexes, [Fe(CS₂·NR₂)₃], show the existence of almost equi-energetic ground states (${}^{6}A_{1}$ and ${}^{2}T_{2g}$ in the O_{h} approximation).¹ Which state is lower depends on the choice of R.² Pressure dependent studies of μ show a molecular contraction of *ca*. 4 cm³ mol⁻¹ as a ${}^{6}A_{1}$ ground state ($t_{2g}^{3}e_{g}^{2}$) passes to a ${}^{2}T_{2g}$ ground state (t_{2g}^{5}). As a comparable contraction does not occur in the cobalt(III) analogues (${}^{1}A_{1}$, t_{2g}^{6}), this is attributed to shrinkage of the FeS₆ core, due to a contraction of *ca*. 0·1 Å in the Fe–S linkage.¹

Preliminary results have been reported by Hoskins and Kelly for structure determinations on the predominantly high-spin tris-(NN-di-n-butyldithiocarbamato)iron(III) (A)³ and the related, predominantly low-spin tris-(O-ethylxan-thato)iron(III) (B).⁴ We have investigated the room temperature structures of the purely high-spin tris(tetra-methylenedithiocarbamato)iron(III) (C) and the low-spin tris-(N-methyl-N-phenyldithiocarbamato)iron(III) (D). The relevant crystallographic data of the MS₆ core for these four complexes are given in the Table. Included also are the electronic ground states of these complexes and the room-temperature magnetic moments. For comparison, we have included structural data available on similar complexes of cobalt(III), (E)⁶ and (F).⁷

From these results, we draw three conclusions regarding the central MS_6 core. (i) Both our data and those of Hoskins indicate a contraction of at least 0.1 Å in the mean Fe-S distance on passing from the high-spin to the low-spin

									Mean M-S						
				Space					bond-				Ground state		
Cpd.	Formula			group	a	Ь	с	β°	lengths	2θ	ζ	μ	O_h	D_{3}	Ref.
(A)	$[\mathrm{Fe}(\mathrm{CS}_2.\mathrm{NBu^n}_2)_3]$	••	••	C2/c	$22 \cdot 49$	10.48	18.41	120.8	2.42	$33 \cdot 2$	$93 \cdot 5$	$5 \cdot 3$	⁶ A ₁	⁶ A	3a
(B)	$[Fe(CS_2.OEt)_3]$	••		R3	14.91		13.31		$2.308 \\ 2.326$	41.2	94·1	2.7	${}^{2}T_{2g}$	${}^{2}E$ ${}^{2}A$	4
(C)	$[\mathrm{Fe}(\mathrm{CS}_2.\mathrm{N}[\mathrm{CH}_2]_4)_3]$	••		$P2_1/n$	16.23	14.53	10.22	90.3	2.41	38.6	93.6	$5 \cdot 9$	⁶ A ₁	⁶ A	b
(D)	$[Fe {CS_2.N(Me)(Ph)}]$	}3]	••	$P2_1/a$	$25 \cdot 3$	12.9	$9 \cdot 5$	116.2	$2.30 \\ 2.33$	40.4	$94 \cdot 1$	$2 \cdot 9$	${}^{2}T_{2}g$	${}^{2}E_{^{2}A}$	b
(E)	$[\mathrm{Co}(\mathrm{CS}_2.\mathrm{NEt}_2)_3]$	••		C2/c	$14 \cdot 10$	10.26	17.02	110.1	$2 \cdot 26$	43.0	$94 \cdot 2$		${}^{1}A_{1}$	${}^{1}\!A$	6
(F)	$[Co(CS_2.OEt)_3]$	••	••	$Rar{3}$	14.87		13.22		$2 \cdot 276$ $2 \cdot 277$	42.4	94.3	—	${}^{1}A_{1}$	1A	7

TABLE

Properties of the complexes (A)—(F)

^a These data differ from those in ref. 3 and derive from revised results kindly supplied by B. F. Hoskins. ^b This work.

form, in agreement with the previous pressure-magnetism studies

(11) The geometry of the FeS_6 core for the high-spin systems approximates to point group D_3 (Figure 1) rather

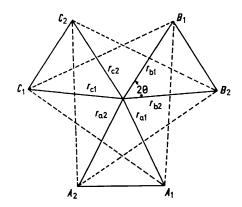


FIGURE 1 Model FeS₆ molecular core viewed down the C₃ axis. It is considered as a pair of parallel equilateral triangles of sulphur atoms (Sal Sb1, Sc1) (Sa2, Sb2, Sc2) arising from ligands a, b, and c and defined by metal-sulphur distances r_{i1} and r_{12} and angle 2 θ , the axial projection of the deviation of the molecule from the trigonal prism extreme.

than O_h This trigonal distortion is to be expected from the geometrical constraint applied to the system by the four membered rings and can be characterized by two parameters 2θ and ζ 2θ is the angle of twist (relative to the C_3 axis) between the upper and lower triangles (Sa1, Sb1, Sc1), (Sa2, Sb2, Sc2) of sulphur atoms (Figure 1) ζ is the mean pyramidal angle of either FeS₃ system (e g the S11-Fe-S11 angle) and describes the degree of distortion along the C_3 axis In the O_h limit $2\theta = 60^\circ$, $\zeta = 90^\circ$

From the Table, it can be seen that ζ is relatively constant as the compounds tend towards the high-spin limit, and that 2θ tends slightly towards the trigonal prismatic The small magnitude of these changes suggests that the FeS₆ angular contraction is affected only indirectly by the electronic ground state via the Fe-S bond contraction

(111) In the low-spin complexes, (B) and (D), the molecular geometry approximates to the point group C_3 , *i* e \bar{r}_1 and \bar{r}_1' (Figure 1) differ significantly (by ca 0 03 Å) It is improbable that distortion of this type in both (B) and (D) is due to ligand effects or packing forces as one might then expect a similar phenomenon in (E) and (F), particularly (F) which is isomorphous with (B) It is likely that the distortion is electronic in origin and due to the ${}^{2}T_{2g}$ state which is susceptible to Jahn-Teller and spin-orbit interactions In point group D_3 , however, the ${}^2T_{2g}$ state becomes 2A and 2E and cannot be split further, unless the three-fold axis is destroyed

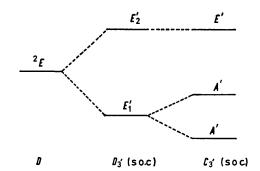


FIGURE 2 Diagram showing the splitting of the ²E state in point group D_{3} as the symmetry is lowered progressively by (a) spin-orbit coupling (to D_{3}'), (b) expansion of the lower triangle of sulphur atoms relative to the upper (to C_{3}')

Inclusion of the spin-orbit coupling operator results in the *E* state of D_3 splitting to E_1' and E_2' in the double group D_3' Further distortion to C_3' splits the E_1' state into two A' states (Figure 2) It hence seems that spin-orbit coupling in the lowest thermally accessible states provides a mechanism for a form of Jahn-Teller distortion to occur The magnitude observed surprises us

(Received, August 17th, 1971, Com 1447)

- ¹ A. H Ewald, R L Martin, I G Ross, and A H White, Proc Roy Soc, 1964, A280, 235
- ² A H Ewald, R L Martin, E Sinn, and A H White Inorg Chem, 1969, 8, 1837
- ³ B F Hoskins and B P Kelly, Chem Comm, 1968, 1517 ⁴ B F Hoskins and B P Kelly, Chem Comm, 1970, 45
- A H White, R Roper, E Kokot, H Waterman, and R L Martin, Austral J Chem, 1964, 17, 294.
- ⁶ S Merlino, Acta Cryst , 1968, B24, 1441
- ⁷ S Merlino, Acta Cryst, 1969, B25, 2270