Relative Selectivities in Bromination Reactions-A Note of Warning

By D. S. Ashton, J. M. Tedder, and J. C. Walton*
(Department of Chemistry, The Purdie Building, The University, St. Andrews, Fife)

Summary Hydrogen bromide is shown to have a pronounced effect on atomic brominations in the gas phase; this is due to two effects, (i) a possible reversible reaction of alkyl radicals with hydrogen bromide, and (ii) the direct reaction between hydrogen bromide and alkyl bromides leading to olefins.

While reinvestigating the gas phase bromination of 1 -bromobutane we have found that l-bromobutane reacts with HBr in the gas phase to produce but-1-ene (Table 1). The distribution of isomeric dibromobutanes in photobromination is therefore affected by the HBr produced in the hydrogen abstraction step, reaction (2), since but-1-ene may add bromine to produce 1,2 -dibromobutane. We have extended these studies to bromocyclohexane (Table 2) which behaves similarly; cyclohexene is formed and adds bromine to give trans-1,2-dibromocyclohexane. Allylic attack on cyclohexene produces 3-bromocyclohexene.

In all experiments the products of reaction were distilled from the reaction vessel through "Carbosorb" to remove unchanged bromine and HBr , thus preventing a solution phase reaction between products and allowing the detection
of olefinic products, which otherwise re-add HBr to give 2-bromobutane and bromocyclohexane, respectively. The suggested mechanism is given by reactions (1)-(5).

$$
\begin{array}{rl}
\mathrm{Br}_{2} \xrightarrow{\boldsymbol{h} \nu} \mathrm{Br}+\mathrm{Br} \cdot \\
\mathrm{Br}^{\cdot}+\mathrm{RCH}_{2} \mathrm{CH}_{2} \mathrm{Br} \longrightarrow & \mathrm{R} \dot{\mathrm{C}} \mathrm{CCH}_{2} \mathrm{Br}+\mathrm{HBr} \\
\mathrm{Br}_{2}+\mathrm{RC} \mathrm{CHCH}_{2} \mathrm{Br} & \longrightarrow \mathrm{RCHBrCH} \\
2 & \mathrm{Br}+\mathrm{Br} \\
\mathrm{HBr}+\mathrm{RCH}_{2} \mathrm{CH}_{2} \mathrm{Br} & \mathrm{RCH}=\mathrm{CH}_{2}+2 \mathrm{HBr} \tag{5}\\
\mathrm{HBr}+\mathrm{RC} \mathrm{CHCH}_{2} \mathrm{Br} & \longrightarrow\left[\mathrm{RCH}_{2} \mathrm{CH}_{2} \mathrm{Br}\right]^{*}+\mathrm{Br} \cdot \\
\downarrow \downarrow \\
& \mathrm{RCH}=\mathrm{CH}_{2}+\mathrm{HBr}
\end{array}
$$

The formation of the 1,2 -isomer was enhanced by the addition of HBr to the 1 -bromobutane-bromine mixture at the start of the reaction. The two shorter timed photolyses shown in Table l illustrate this clearly. In the original bromination of 1 -bromobutane ${ }^{1}$ using a flow reactor, 1,3-dibromobutane was the major product. Presumably this was due to the short contact time (ca. 45 s) which
Table 1

Reactants		Products (expressed as moles; relative to moles of BuBr)					
$\mathrm{BuBr}\left(\mathrm{mol} \mathrm{1}{ }^{\mathbf{- 1}}\right.$)	$\mathrm{Br}_{2}\left(\mathrm{~mol} \mathrm{l}^{-1}\right)$	$\mathrm{HBr}\left(\mathrm{mol} \mathrm{l}^{\mathbf{- 1}}\right)$	But-1-ene	2 -Bromobutane	1,1-Dibromo	1,2-Dibromo	1,3-Dibromo
3.33×10^{-4}	-	$7 \cdot 12 \times 10^{-4}$	6.01×10^{-2}	7.01×10^{-3}	-	- $\times 10$	-
3.33×10^{-4}	6.96×10^{-5}	$7 \cdot 12 \times 10^{-4}$	$3 \cdot 16 \times 10^{-2}$	5.85×10^{-3}	traces	11.1×10^{-2}	1.64×10^{-2}
3.33×10^{-4}	6.96×10^{-5}	-	traces	traces	1.71×10^{-3}	2.27×10^{-2}	8.03×10^{-2}
3.33×10^{-4}	6.96×10^{-5}	$7 \cdot 12 \times 10^{-4}$	traces	1.60×10^{-2}	5.95×10^{-3}	14.9×10^{-2}	1.94×10^{-2}
3.33×10^{-4}	6.96×10^{-5}	-	traces	2.61×10^{-2}	$4 \cdot 61 \times 10^{-8}$	6.60×10^{-2}	3.00×10^{-2}

Table 2
The bromination of bromocyclohexane with and without added HBr , at 100°

allowed virtually no opportunity for reaction between the l-bromobutane and HBr .

Olefin can thus be formed by direct interaction of HBr with the bromoalkane which may occur by a surface reaction or by autocatalytic decomposition of the bromoalkane. Alternatively the reverse of step (2) could give a thermally excited bromobutane molecule which eliminates HBr to produce but-1-ene, reaction (5). However, this seems unlikely since $\left[\mathrm{RCH}_{2} \mathrm{CH}_{2} \mathrm{Br}\right] *$ would not be very excited as the HBr bond has to be broken.

This formation of the 1,2-dibromo-products via the olefin in the gas phase means that arguments about directive effects or about anchimeric assistance by the bromine substituent as suggested by Skell ${ }^{2}$ and Thaler, ${ }^{3}$ to explain the
high yields of 1,2 -dibrominated products obtained in their solution phase reactions must be treated with some reservation.
A mechanism whichinvolves the β-(1-bromobutyl) radical (formed initially by hydrogen abstraction) eliminating a bromine atom to give the corresponding olefin, has been suggested by Tedder ${ }^{1}$ and by Tanner ${ }^{4}$ for their respective chlorinations and brominations of l-bromobutane. A direct interaction between HBr and a bromocycloalkane would not be noticed when studied in the solvent phase, since such a reaction would be reversible.
(Received, August 27th, 1971; Com. 1498.)

