Intermediacy of O-Sulphinates in the Reaction of Transition-Metal Carbonyl Alkyls and Aryls with Sulphur Dioxide

By S. E. JACOBSON, P. REICH-ROHRWIG, and A. WOJCICKI*

(Department of Chemistry, The Ohio State University, Columbus, Ohio 43210)

Summary Spectroscopic (¹H n.m.r. and i.r.), electrical conductivity, and chemical evidence indicates that reactions of π -C₅H₅Fe(CO)₂R, π -C₅H₅Mo(CO)₃R, and Mn(CO)₅R (R = alkyl or aryl) with SO₂ proceed via the intermediacy of the oxygen-bonded sulphinates, which subsequently rearrange to the thermodynamically stable and isolable sulphur-bonded sulphinates.

and a quartet and a singlet appear and grow at τ 6.49 (centre) and 5.79. The latter is due to the CH₂ protons of π -C₅H₅Fe(CO)₂S(O)₂CH₂Ph.⁴ After *ca.* 1 h the spectrum is that shown in the Figure. Longer reaction times (*ca.* 1 day at -25°) cause diminution in intensity of the signal at τ 6.49 and disappearance of the signal at τ 7.31. Removal of the solvent at approximately this stage of the reaction leads to isolation of the S-bonded π -C₅H₅Fe(CO)₂S(O)₂CH₂Ph.

A qualitatively similar behaviour is noted for a solution of $Mn(CO)_5CH_2Ph$ in SO_2 at -37° . However, in the n.m.r. spectrum of π -C₅H₅Mo(CO)₃CH₂Ph, recorded in SO₃ at -37° , a very low intensity quartet centred at τ 6.40 appears at the outset, remains barely discernible throughout the reaction, and eventually vanishes. For all three benzyl complexes the observed behaviour is consistent with a two step reaction:

$$[M]-CH_2Ph + SO_2 \xrightarrow{R_1} Intermediate \xrightarrow{R_2} [M]-SO_2 \cdot CH_2Ph$$

with k_2/k_1 decreasing in the order [M] = π -C₅H₅Mo(CO)₅ > Mn(CO)₅ > π -C₅H₅Fe(CO)₂. The spectra are presented in the Table.

The reaction of sulphur dioxide with a variety of transitionmetal alkyls and aryls serves as a convenient route to the corresponding S-sulphinates.¹⁻³ It has been assumed—in some cases implicitly—that the S-bonded sulphinates are formed directly *via* a one-step concerted mechanism.^{1,3} We now present results which show that, contrary to the earlier suppositions, oxygen-bonded sulphinates are the initial products in some, if not all, reactions of SO₂ with transition-metal alkyls and aryls.

Changes in constitution of a solution of π -C₅H₅Fe(CO)₂-CH₂Ph in liquid SO₂ were followed by n.m.r. spectroscopy at -18°. In the methylene proton region, the CH₂ signal of π -C₅H₅Fe(CO)₂CH₂Ph at τ 7.31 diminishes in intensity

$N, M, T, uuuu + T + 10T \cup \Box_{a} vroions of + N + U \Box_{a} P \cap and the corresponding U- and S-subningles in SU$	N.m.r. data (+)) for CH. proton:	of [M]-CH.Ph and the	corresponding O- and	S-sulphinates in SO.
--	-----------------	-------------------	----------------------	----------------------	----------------------

TABLE

	π -C ₅ H ₅ Fe(π -C ₅ H ₅ Mo(Mn(CO) ₅	[M] CO) ₂ CO) ₃	 	 	Temp. 	CH2Ph 7·31 7·12 7·64	$OS(O)CH_2Ph$ 6:57, 6:41(<i>J</i> 12:6 Hz) 6:49, 6:31(<i>J</i> 12:5 Hz) 6:41, 6:27(<i>J</i> 12:5 Hz)	$S(O)_2CH_2P_2 5.79 5.78 5.70$
^a Me ₄ Si intern	al reference.	Acc	uracy	ca. 0.0	3 p.p.m.	^b ±7°.		

The i.r. spectrum in the v(CO) region of a solution of π -C₅H₅Fe(CO)₂CH₂Ph in SO₂, recorded 4 h after its preparation at -30° , shows, in addition to the weaker bands of the unchanged alkyl, two intense absorptions at 2062 and 2012 cm⁻¹. These frequencies are very close to, but not identical with, those (2064 and 2018 cm^{-1}) obtained for a solution of the authentic S-bonded π -C₅H₅Fe(CO)₂S(O)₂CH₂Ph at the same temperature. They have been assigned to the reaction intermediate. SO₂ solutions of π -C₅H₅Fe(CO)₂R (R = Me, p-Tol) manifest a similar behaviour, indicating that this phenomenon is general and extends also to the aryl complexes. A close similarity in v(CO) between the intermediates and the corresponding S-sulphinates and/or small concentrations of the former in solution helped preclude earlier detection of this behaviour.

FIGURE. The CH₂ resonances of the ¹H n.m.r. spectrum of ca. 1 h old solution of π -C₅H₅Fe(CO)₂CH₂Ph in SO₂ at -18°: S-sulphinate, S(O)₂CH₂, (b) O-sulphinate, OS(O)CH₂, and (c) unchanged alkyl, FeCH₂.

The appearance of the CH₂ signals as AB quartets in the n.m.r. spectra of the benzyl intermediates points to a chiral sulphur therein.⁵ Two structures (I and II) satisfy this requirement. Ionic formulations may be ignored, since solutions (ca. 10^{-2} M) of π -C₅H₅Fe(CO)₂R (R = Me,

¹ W. Kitching and C. W. Fong, Organometallic Chem. Rev. (A), 1970, 5, 281.

² M. D. Johnson and G. J. Lewis, J. Chem. Soc. (A), 1970, 2153.

³ M. Graziani and A. Wojcicki, Inorg. Chim. Acta, 1970, 4, 347.

⁴ J. P. Bibler and A. Wojcicki, J. Amer. Chem. Soc., 1966, 88, 4862.

⁵ L. M. Jackman, "Applications of Nuclear Magnetic Resonance Spectroscopy in Organic Chemistry", Macmillan, New York, 1959, ⁹ L. M. Jackman, Applications of Fucient Indentification for the set of the s

 CH_2Ph) in SO_2 at -32° exhibit molar conductivities of 0.24-0.11 ohm⁻¹ cm², compared with 84 ohm⁻¹ cm² for $[\pi-C_5H_5Fe(CO)_2PPh_3]+PF_6^{-.6}$ Although the i.r. data do not permit differentiation between structures (I) and (II),⁷ the former receives support from the following combined evidence. (i) A solution of π -C₅H₅Fe(CO)₂R (R = Me, CH₂Ph, p-Tol; 1 part) in SO₂ was allowed to reflux for 2-4 h and then treated with KI (1-100 parts). After the resulting mixture was stored for ca. 2 h at -10° , removal of the solvent and work-up invariably led to isolation of π -C₅H₅Fe-(CO)₂I (up to 75%) in addition to the S-sulphinate. Since the S-sulphinates do not react with KI under these conditions, it is improbable that the S-bonded compounds of structure (II) would exhibit such a marked reactivity toward iodide. (ii) The direction of polarization of the M-R and S-O bonds renders the 1,2-addition to give MS-(O)OR very unlikely. By contrast, the other mode of 1,2-addition to afford MOS(O)R is very plausible and occurs with a wide variety of main-group alkyls and aryls.1

Work in progress is concerned with isolation of Osulfinato-intermediates.

 $[M] = \pi - C_5 H_5 Fe(CO)_2, \ \pi - C_5 H_5 Mo(CO)_3, \ Mn(CO)_5$

We thank the National Science Foundation for support, The Ohio State University Graduate School for a Postdoctoral Fellowship (to P.R.-R.), and Mr. D. L. Denton for experimental assistance.

(Received, September 13th, 1971; Com. 1599.)