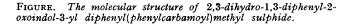
Molecular Structure of One of the 1:2 Adducts from Diphenylsulphur Di-imide and Diphenylketen

By Yasushi Kai, Noritake Yasuoka, Nobutami Kasai,* Toru Minami, Kazunori Yamataka, Yoshiki Ohshiro, and Toshio Agawa

(Department of Applied Chemistry, Faculty of Engineering, Osaka University, Yamadakami, Suita, Osaka, 565, Japan)

Summary A single crystal X-ray diffraction study of one of the 1:2 adducts from diphenylsulphur di-imide and diphenylketen has shown that the structure is 2,3 - dihydro - 1,3 - diphenyl - 2 - oxoindol - 3 - yl diphenyl-(phenylcarbamoyl)methyl sulphide.

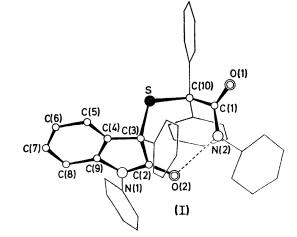
STUDIES on the reaction of sulphur di-imide with diphenylketen have been previously reported.¹ Two types of 1:1cycloadducts, 1,2,5-thiadiazolidin-4-one and 1-imino-1,2thiazetidin-3-one, were obtained in the reaction, but no description of the 1:2 adducts has so far been given. By control of the reaction conditions, we have shown that two kinds of 1:2 adducts are formed in the reaction between diphenylsulphur di-imide and diphenylketen. One of them is an unstable product (A) and the other a stable product (B), m.p. 208 °C. On heating (A), (B) is obtained with 2,3,3,5-tetraphenyl-1,2,5-thiadiazolidin-4-one and diphenylketen. By X-ray analysis we have shown that (B) has the structure shown in the Figure.


Crystal data: $C_{40}H_{30}O_2N_2S$, Mol. Wt. 602.8; monoclinic, space group $P2_1/a$; a = 22.206(6), b = 11.907(2), c = 12.027(4) Å, and $\beta = 100.50(2)^\circ$, U = 3126 Å³; $D_m = 1.26$ (flotation method), $D_c = 1.28$ g cm⁻³ for Z = 4.

The three-dimensional intensity data were collected on a Rigaku on-line controlled single crystal diffractometer with nickel-filtered Cu- K_{α} radiation. The structure was solved by the symbolic addition method,² and then refined by block-diagonal least-squares procedures with anisotropic temperature factors, including isotropic hydrogens (R = 0.056 for 3030 reflections).

Important bond distances and angles in the molecule are given in the Table.

TABLE	
-------	--


Bond distances (Å)		Bond angles (*)		
SC(3)	1.869(4)	N(1)-C(2)-C(3)	107.6(3)	
S-C(10)	1.881(4)	C(2)-C(3)-C(4) C(3)-C(4)-C(9)	101·9(3) 109·5(4)	
N(1) - C(2)	1·386(5)	C(4) - C(9) - N(1)	109·9(4)	
C(2) - C(3)	1.540(6)	C(9) - N(1) - C(2)	110.3(3)	
C(3) - C(4)	1.509(6)	N(1) - C(2) - O(2)	125.0(4)	
C(4) - C(9)	1.375(6)	C(3) - C(2) - O(2)	$127 \cdot 4(4)$	
C(9) - N(1)	1.416(6)	C(2) - C(3) - S	$108 \cdot 2(3)$	
C(2) - O(2)	1.215(5)	C(4) - C(3) - S	100·7(3)	
C(10) - C(1)	1.554(6)	C(3) - S - C(10)	$115 \cdot 1(2)$	
C(1) - O(1)	$1 \cdot 221(5)$	S-C(10)-C(1)	$111 \cdot 3(3)$	
C(1) - N(2)	1.344(5)	C(10) - C(1) - O(1)	120.9(4)	
$N(2) \cdots O(2)$	2·786(4)	C(10) - C(1) - N(2)	114.8(4)	
	()	O(1) - C(1) - N(2)	$124 \cdot 2(4)$	

(Received, September 16th, 1971; Com. 1620.)

¹ T. Minami, O. Aoki, H. Miki, Y. Ohshiro, and T. Agawa, *Tetrahedron Letters*, 1969, 447; N. Yasuoka, N. Kasai, T. Minami, Y. Ohshiro, T. Agawa, and M. Kakudo, *Bull. Chem. Soc. Japan*, 1970, 43, 1905; H. H. Hoerhold and H. Eibisch, *Tetrahedron*, 196 9, 25 4277; H. Grill and G. Kresze, *Tetrahedron Letters*, 1970, 1427.

² J. Karle and I. L. Karle, Acta Cryst., 1966, 21, 849.

