Synthesis of N-Acyl Amino-acids by a Carbonylation Reaction

By H. WAKAMATSU,* J. UDA, and N. YAMAKAMI

(Central Research Laboratories, Ajinomoto Co. Inc., Suzuki-cho, Kawasaki, Japan)

Summary A novel cobalt carbonyl-catalysed reaction gives an N-acyl amino-acid from an aldehyde, an amide, and carbon monoxide.

 $\begin{array}{ll} \mathrm{R}^{1}\mathrm{CH}:\mathrm{CH}_{2}+\,\mathrm{R}^{2}\mathrm{CONH}_{2}+\,2\mathrm{CO}\,+\,\mathrm{H}_{2} & \overset{\mathrm{CO}_{2}(\mathrm{CO})_{8}}{\longrightarrow} & \overset{\mathrm{NHCOR}^{2}}{\mid} \\ \mathrm{R}^{1}\mathrm{CH}_{2}\cdot\mathrm{CH}_{2}\cdot\mathrm{CH}_{2}\cdot\mathrm{CH}\cdot\mathrm{CO}_{2}\mathrm{H} \end{array}$

The scope of the reaction is wide, giving various N-acyl-

In the course of our studies on the hydroformylation of $\alpha\beta$ unsaturated nitriles, a novel cobalt carbonyl catalyzed reaction has been found to give N-acyl- α -amino-acids by carbonylation.

In the case of the synthesis of N-acetylalanine, the ratio of α - to β -alanine, after hydrolysis, is 550:1.

Table

Reaction Conditions

 α -amino-acids.

Aldebyde (50 mmol)	Amide (50 mmol)	Solv	Temp	Time (min)	Products	(mmol)
E-maildebade	Asstamida	Diaman	1109	15	N A sotulalizaina	19
Formaldenyde	Acetamide	Dioxan	110	15	N-Acetyigiyeine	15
Acetaldehyde	Acetamide	EtOAc	115°	10	N-Acetylalanine	34
Propionaldehyde	Acetamide	AcOH	150°	60	N -Acetyl- α -amino-n-butyric acid	23
Isobutyraldehyde	Acetamide	Dioxan	120°	60	N-Acetylvaline	35
Phenylacetaldehyde	Acetamide	Dioxan	140°	70	N-Acetylphenylalanine	27
β-Formylpropionitrile	Acetamide	Dioxan	120°	80	N -Acetyl- γ -cyano- α -amino-n-butyric	
					acid	29
Methyl β -formylpropionate	Acetamide	EtOAc	120°	25	N-Acetyl-y-methylglutamate	35
β -Methylmercaptopropionaldehyde	Acetamide	EtOAc	120°	20	N-Acetylmethionine	32
Acetaldehyde	Benzamide	Dioxan	120°	95	N-Benzoylalanine	15
Acetaldehyde	Lauramide	EtOAc	120°	15	N-Lauroylalanine	40
β-Formylpropionitrile	Lauramide	Dioxan	120°	20	N-Lauroyl- γ -cyano- α -amino-n-butyric	
					acid	34
Acetaldehyde	N-Ethylacetamide	Dioxan	130°	70	N-Acetyl- N -ethylalanine	29

A 100 ml capacity autoclave and 50 ml of the specified solvent were used.

Catalyst: Co₂(CO)₈ 300 mg. Initial gas pressure: CO 150 kg/cm², H₂ 50 kg/cm²

$$R^{1}CHO + R^{2}CONH_{2} + CO \xrightarrow{Co_{2}(CO)_{8}} \qquad \begin{array}{c} NHCOR^{2} \\ | \\ R^{1}CHO_{2}H \end{array}$$

advantageously coupled with an oxo process.

The reaction proceeds under exactly the same conditions as used for the hydroformylation reaction. Thus it can be

Benzaldehyde and acetamide give N-acetylbenzylamine under these reaction conditions. Furfural and acraldehyde also give anomalous results.

With a stoicheiometric amount of dicobalt octacarbonyl, the reaction proceeds under atmospheric pressure and at room temperature.

(Received, October 4th, 1971; Com. 1738.)