O-Bonded and **S**-Bonded Sulphinate Complexes of Iridium(1) and Iridium(111). Ligand Isomerisation accompanying Change in Co-ordination Number

By C. A. REED and W. R. ROPER*

(Department of Chemistry, University of Auckland, Auckland, New Zealand)

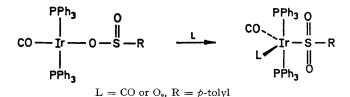
Summary The four-co-ordinate iridium(I) compound, Ir(O_2S-p -tolyl)(CO)(PPh₃)₂ has O-bonded sulphinate but uptake of carbon monoxide or dioxygen results in isomerisation to S-bonded sulphinate while addition of methyl iodide leaves the ligand O-bonded.

THE sulphinate ion can co-ordinate to a metal through either sulphur or oxygen, the particular atom being indicative of the bonding character of the co-ordination site. It is generally found¹ that class a acceptors bind through oxygen and class b acceptors through sulphur and in keeping with this generalisation the known sulphinate derivatives of the platinum metals are all S-bonded except for one instance $[in Pt_2(SO_2-p-tolyl)_2(SnCl_3)_2(PEt_3)_2^2]$ in which it appears that the sulphinate ligand is bridging. $IrCl_2(SO_2-p-tolyl)(CO)-(PPh_3)_2$ is prepared by addition of sulphonyl halide to $IrCl(CO)(PPh_3)_2$ and has the sulphinate S-bonded.³ To investigate further the nature of the bonding site for anionic ligands in four-co-ordinate complexes of the type $IrX(CO)(PPh_3)_2$ we have prepared $Ir(O_2S-p-tolyl)(CO)-$

 $({\rm PPh}_3)_2$ (I), from $[{\rm Ir}({\rm MeCN})({\rm CO})({\rm PPH}_3)_2]{\rm ClO_4^4}$ and sodium toluene-p-sulphinate. The v(SO) frequencies observed for (I) (see Table) require O-bonded sulphinate.¹ The possibility of a bridging situation existing in a dimer or polymer can be discounted in view of the similarity of y(CO) with that for other $IrX(CO)(PPh_3)_2$ complexes, the compounds normal solubility, and a molecular weight determination in benzene (osmometer; 37 °C, M, found 890; calc. 899).

The unexpected preference of the site trans to carbon monoxide in IrX(CO)(PPh₃)₂ for 'hard' ligands is shown also five-co-ordinate complexes $Ir(SO_2-p-tolyl)(CO)_2(PPh_3)_2$ and Ir(O₂)(SO₂-p-tolyl)(CO)(PPh₃)₂ but in doing so the sulphinate ligand switches from O- to S-bonded. The CO uptake is easily reversed but the O₂ uptake is irreversible. When Ir(O₂)(SO₂-p-tolyl)(CO)(PPh₃)₂ is converted into the chelated sulphate Ir(SO₄)(SO₂-p-tolyl)(CO)(PPh₃)₂ through reaction with SO₂ the sulphinate remains S-bound. The further coordination of both CO and O2 requires electron transfer from iridium to these ligands [it has been estimated that 1.8 electrons transfer from Pt to O_2 in $Pt(O_2)(PPh_3)_2$ ⁶ and since

TABLE					
I.r. frequencies ^a for iridium sulphinates ^b (cm ⁻¹)					
Ir(O ₂ S-p-tolvl)(CO)(PPh ₂) ₂	v(SO) 1085s	v _{as} (SOIr) 855vs, 840s	$\nu_{as}(SO_2)$	$\nu_8(\mathrm{SO}_2)$	Other bands 1955vs[v(CO)]
$\operatorname{Ir}(S\tilde{O}_2 - p - \operatorname{tolyl})(CO)_2(PPh_3)_2$			1155s, 1140s	1020s, 1010s	1940vs 2000vs[v(CO)]
$Ir(O_2)(SO_2-p-tolyl)(CO)(PPh_3)_2$			1210vs, 1190vs	1050s	2025vs[v(CO)] 835s[v(IrO ₂)]


1240₃

 $Ir(SO_4)(SO_2-p-tolyl)(CO)(PPh_3)_2$

 $Ir(Me)I(O_2S-p-tolyl)(CO)(PPh_3)_2$

1075s 870s

^a All measured for Nujol mulls. ^b Satisfactory elemental analyses have been obtained for all compounds reported.

by the N-bonded selenocyanate complex⁵ and the existence of Ir(OH)(CO)(PPh₃)₂⁴ and IrF(CO)(PPh₃)₂.⁴ Like other members of this series (I) reacts with CO and O₂ forming the

¹G. Vitzthum and E. Lindner, Angew. Chem. Internat. Edn., 1971, 10, 315.

² J. Chatt and D. M. P. Mingos, J. Chem. Soc. (A), 1969, 1770.
³ J. P. Collman and W. R. Roper, J. Amer. Chem. Soc., 1966, 88, 180.
⁴ G. R. Clark, C. A. Reed, W. R. Roper, B. W. Skelton, and T. N. Waters, Chem. Comm., 1971, 758.
⁵ J. L. Burmeister and N. J. DeStefano, Chem. Comm., 1970, 1698.
⁶ C. D. Cach, W. W. W. H. Calina, K. Hamiro, C. Lobosco, F. Olsson, H. Sieghahn, C. Nordling, K. Standard, C. Nordling, K. Standard, C. Marker, P. Calina, K. Standard, C. Nordling, K. Standard, S. S. Standard, C. Nordling, K. Standard, S. Standard, C. Standard, S. Standard, C. Nordling, K. Standard, S. St

⁶C. D. Cook, K. Y. Wan, U. Gelius, K. Hamrin, G. Johansson, E. Olsson, H. Siegbahn, C. Nordling, and K. Siegbahn, J. Amer. Chem. Soc., 1971, 93, 1904.

⁷ J. H. Price, R. F. Schramm, and B. B. Wayland, Chem. Comm., 1970, 1377.

this coincides with a switch from O- to S-bonded sulphinate it can be concluded that S-bonded sulphinate is a good σ donor. This same conclusion was drawn from a consideration of the strong trans-influence of the S-bonded sulphinate in platinum compounds² but it conflicts with other views.¹

1060s

Oxidation of (I) with methyl iodide produces an iridium (III) compound in which O-bonded sulphinate persists (see Table). Steric factors could be influencing the preferred isomer in this case as they can do in sulphoxide complexes.⁷

(Received, September 20th, 1971; Com. 1649.)

2055vs[v(CO)] 1300vs, 1190vs 890s, 860s, 660s(SO4)

2040vs[v(CO)]