Dissociation of Tris(triphenylphosphine)chlororhodium(1) in Solution

By HIROMICHI ARAI and JACK HALPERN*

(Department of Chemistry, The University of Chicago, Chicago, Illinois 60637)

Summary The equilibrium constant for the dissociation of RhCl(PPh₃)₃ according to the reaction, RhCl(PPh₃)₃ \rightleftharpoons RhCl(PPh₃)₂ + PPh₃, has been determined spectro-photometrically to be $(1.4 \pm 0.4) \times 10^{-4}$ M in benzene solution at 25°.

THE dissociation of $RhCl(PPh_3)_3$ in solution [into RhCl-(PPh₃)₂ and PPh₃] has been a subject of considerable interest and controversy, particularly in view of the indications of the importance of such dissociation to the distinctive chemical properties of RhCl(PPh₃)₃, *e.g.*, as a hydrogenation catalyst¹ and as a reagent for the decarbonylation of aldehydes.² Recent n.m.r. measurements³ and chemical evidence⁴ indicate that the degree of dissociation in solvents such as benzene and chlorinated hydrocarbons is much smaller than suggested by early molecularweight measurements,¹ but fail to yield quantitative estimates of such dissociation. Clarification of this situation is afforded by the results of the spectrophotometric measurements which we report here and which lead to a quantitative determination of the equilibrium constant, K, for the dissociation of RhCl(PPh₃)₃ in benzene solution according to equation 1.

$$\begin{array}{c} K \\ \text{RhCl}(\text{PPh}_{3})_{3} \rightleftharpoons \text{RhCl}(\text{PPh}_{3})_{2} + \text{PPh}_{3} \end{array} \tag{1}$$

Dilute benzene solutions of $RhCl(PPh_3)_3$ (< 10⁻³ M), from which oxygen had been rigorously excluded, exhibited departures from Beers' law, the apparent extinction coefficient in the 350-500 nm range decreasing with increasing dilution. Addition of an excess of PPh₃ resulted in the restoration of the absorbance to the limiting spectrum characteristic of concentrated $(> 10^{-3} M)$ solutions of RhCl(PPh₃)₃. The effect of PPh₃ on the spectrum, depicted in Figure 1, was found to be quantitatively in accord with

FIGURE 1. Effect of added PPh₃ on the spectrum of 5.1×10^{-4} M RhCl(PPh₃)₃ in benzene (1 cm light path). Added PPh₃, M: 1, 0.0; 2, $2 \cdot 5 \times 10^{-4}$; 3, $5 \cdot 0 \times 10^{-4}$; 4, $7 \cdot 5 \times 10^{-4}$; 5, $12 \cdot 5 \times 10^{-4}$; 6, 25×10^{-4} ; 7, $> 5 \times 10^{-3}$ (= A_∞).

the dissociation reaction (1) which is described by the equilibrium relations (2), where A is the solution absorbance, A_{∞} is the limiting absorbance at high PPh₃ concentrations, ϵ_1 and ϵ_2 are the extinction coefficients of $\mathrm{RhCl}(\mathrm{PPh}_3)_3$ and $\mathrm{RhCl}(\mathrm{PPh}_3)_2$, respectively, $\Delta \epsilon = \epsilon_1 - \epsilon_2$, and $[PPh_3]_0$ is the concentration of added (*i.e.*, excess) PPh3.†

$$K = \frac{[\text{RnCl}(\text{PPh}_3)_2][\text{PPh}_3]}{[\text{RhCl}(\text{PPh}_3)_3]} = \frac{[A_{\infty} - A]\{[\text{PPh}_3]_0 \Delta \epsilon + [A_{\infty} - A]\}}{\Delta \epsilon \{A - A_{\infty}[1 - \Delta \epsilon / \epsilon_1]\}}$$
(2)

Fitting the spectral data to equation (2), demonstrated by Figure 2, yielded the value $K = (7 \pm 1) \times 10^{-5}$ M,

FIGURE 2. Effect of added PPh₃ on the absorbance at 410 nm of a $5\cdot 1 \times 10^{-4}$ M RhCl(PPh₃)₃ solution in benzene. The circles are experimental points (from Figure 1). The solid curve is computed from equation (2) using $\epsilon_1 = 1.42 \times 10^3$, $\epsilon_2 = 0.42 \times 10^3$ and K $= 1.4 \times 10^{-4} \text{m}.$

which was found to be independent of the wavelength over the range 400-420 nm where the absorbance changes permit the most accurate determinations of K. It should be noted that this value of K is sufficiently small to support the conclusions derived from other measurements^{3,4} that dissociation of RhCl(PPh₃)₃ in more concentrated solutions $(> 10^{-2} \text{ M})$ is not extensive.[‡]

Preliminary analogous measurements on PhBr(PPh₃)₃ and $RhI(PPh_3)_3$ yielded similar values of ca. 10⁻⁴M in each case for the corresponding dissociation equilibrium constants in benzene at 25°.

Support of this work by the National Science Foundation and by the Petroleum Research Fund, administered by the American Chemical Society, is gratefully acknowledged.

(Received, July 12th, 1971; Com. 1189.)

† The derivation of equation (2) is based on the valid assumption that, compared with those of RhCl(PPh₃)₃, and RhCl(PPh₃)₂ the extinction coefficient of PPh_3 over the wavelength range of the measurements, 390–440 nm, is negligible. All absorbance values refer to 1 cm light path.

t Within the accuracy of the fit of our experimental data to equation (2), no contribution from the accompanying dimerization $\operatorname{process}^{*}_{2} 2 \operatorname{RhCl}(\operatorname{PPh}_{3})_{2} \rightleftharpoons [\operatorname{RhCl}(\operatorname{PPh}_{3})_{2}]_{2}, \text{ could be detected.}$

¹ J. A. Osborn, F. H. Jardine, J. F. Young, and G. Wilkinson, J. Chem. Soc. (A), 1966, 1711. ² M. C. Baird, C. J. Nyman, and G. Wilkinson, J. Chem. Soc. (A), 1968, 348. ³ D. R. Eaton and S. R. Stuart, J. Amer. Chem Soc., 1968, 90, 4170.

- ⁴ D. D. Lehman, D. F. Shriver, and I. Wharf. Chem. Comm., 1970, 1486.