Molecular Structures of Methyl(cyclopentadienyl)beryllium and Cyclopentadienylberyllium Chloride by Gas-phase Electron Diffraction

By D. A. DREW and ARNE HAALAND*

(Department of Chemistry, Oslo University, Blindern, Oslo 3, Norway)

Summary The molecular structures of $MeBe(C_5H_5)$ and (C_5H_5) BeCl have been determined by gas-phase electron diffraction.

METHYL(CYCLOPENTADIENYL)BERYLLIUM, MeBeCp, and cyclopentadienylberryllium chloride, CpBeCl, have been synthesized.¹ Both compounds are monomeric in hydrocarbon solution.¹ We have determined the molecular structures of these compounds by gas-phase electron diffraction. The electron diffraction data show both molecules to be of the "half sandwich" type with approximately C_{5v} symmetry. The main molecular parameters (estimated standard deviations in parentheses) are given in the Table.

The Be-C(Cp) bond distances are similar to that found [1.907(5) Å] between Be and the carbon atoms in the nearest cyclopentadienyl ring in dicyclopentadienylberyllium.² The \bar{C} -C bond distances in the cyclopentadienyl rings in the three compounds are indistinguishable.

The Be-C(Me) bond distance in MeBeCp is not significantly different from the Be-C bond distance in dimethylberyllium,³ 1.698(5) Å, but the Be-Cl bond distance in

- ¹ D. A. Drew and G. L. Morgan, unpublished results.
- ² A. Haaland, Acta Chem. Scand., 1968, 22, 3030. ³ A. Almenningen, A. Haaland, and G. L. Morgan, Acta Chem. Scand., 1969, 23, 2921.
- ⁴ P. A. Akishin and V. P. Spiridinov, Kristallografiya, 1957, 2, 475.

CpBeCl is significantly larger than in monomeric beryllium dichloride, 4 1.75 \pm 0.02 Å.

		ABLE	
$\begin{array}{ccc} C-C & \dots \\ Be-C(Cp) \\ h^{a} & \dots \\ Be-C(Me) \\ Be-Cl & \dots \end{array}$	 	CpBeMe/Å 1·420(2) 1·923(3) 1·497(3) 1·706(7)	CpBeCl/Å 1·424(2) 1·915(6) 1·484(7) 1·839(7)

^a h is the perpendicular distance from Be to the Cp ring.

It seems reasonable to assume that there is less dative Be-Cl π -bonding in CpBeCl than in BeCl₂. One possible explanation for this, and for the monomeric nature of the two compounds MeBeCp and CpBeCl, is that the Be atom, being bonded to the five-electron ligand Cp and having formed σ -bonds to Cl or C(Me), is already surrounded by an octet of electrons.

(Received, October 11th, 1971; Com. 1756.)