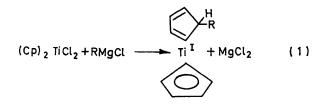
Isolation of a Binuclear Complex Intermediate in the Reaction of Molecular Nitrogen with Titanium Compounds

By A. E. Shilov,* A. K. Shilova, E. F. Kvashina, and T. A. VORONTSOVA


(Institute of Chemical Physics of the Academy of Sciences of the U.S.S.R., Filial, Chernogolovka, Moscowskaja oblast, U.S.S.R.)

Summary An unstable binuclear titanium complex with molecular nitrogen has been isolated at low temperatures and its composition has been determined; the complex is an intermediate in the reduction of dinitrogen to hydrazine and ammonia.

REVERSIBLE formation of bright blue unstable binuclear complexes (λ_{max} 610 nm) with reduced titanium compounds has been observed^{1,2} in the system (Cp)₂TiCl₂-RMgX-N₂ (Cp = π -C₅H₅; R = Pr¹ or Et) at low temperatures (-100 to -80 °C). The complexes are apparently intermediates in the reduction of N₂.

Recently Brintzinger reported³ that a similar blue dititanium complex with dinitrogen is formed when N₂ reacts with a particular form of $(Cp)_2Ti$. Also Teuben and Meijer isolated a blue dinitrogen-dititanium complex $(\lambda_{\max} \ 616 \ nm)$ in the reaction of N₂ with $(Cp)_2TiPh$ which they considered to be a derivative of Ti^{III}.⁴

In the present work we prepared an analogous complex by the reaction of $Pr^{1}MgCl$ with $(Cp)_{2}TiCl$ in solution in ether under N₂ at -80 to -100 °C. The solution of $(Cp)_{2}TiCl$ was prepared by reduction of $Cp_{2}TiCl_{2}$ with K-Na alloy. The blue precipitate formed was thoroughly washed at -80 °C with dimethyl ether. The residue contains no Mg and Cl and, after being dried in vacuo, is a dark blue powder which is stable at -100 °C but slowly decomposes at -70 °C with evolution of N₂.

Decomposition by HCl and MeOH gives propane (C₃H₇D in the case of MeOD) and dinitrogen, the ratio Ti: N2: PrH being 1: 0.5: 1. Subsequent reaction with 0_2 in the presence of HCl leads to (Cp)₂TiCl₂. No other products (e.g. NH₃ or N_2H_4) except gaseous N_2 are formed from the complexed nitrogen during solvolysis. Thus the formula of the complex is $[(Cp)_2RTi)]_2N_2$, in agreement with results⁴ which show a dinitrogen molecule as a bridge between two Ti atoms. We believe, however, that the species reacting with N₂ are not necessarily (Cp)₂Ti^{III}R but may be derivatives (1) of univalent titanium formed according to equation (1).

With excess of Pr¹MgCl slow transformation of the blue complex into a black one takes place in ether solution at -60 °C. The decomposition of the latter by HCl produces N_2H_4 in almost quantitative yield based on complexed dinitrogen. Considerable amounts of hydrazine were also detected after the purified solid complex had been set aside with a solution of PrⁱMgCl in ether at -60 °C for several hours and subsequently hydrolysed with aqueous HCl. Subsequent reduction to the ammonia derivative which forms NH_a during hydrolysis occurs at temperatures > 0 °C. These results indicate that the blue complex is an intermediate in the reduction of molecular nitrogen, though the necessity for the presence of an excess of reducing agent shows that the composition of the complex must change before it is able to reduce N_2 .

(Received, June 14th, 1971; Com. 969.

- ¹ A. E. Shilov, A. K. Shilova, and E. F. Kvashina, Kinetica i Kataliz, 1969, 10, 1402.
- ² A. E. Shilov and A. K. Shilova, Zhur. Fiz. Khim., 1970, 44, 288.
- ⁸ R. H. Mawich and H. Brintzinger, J. Amer. Chem. Soc., 1971, 93, 2046.
 ⁴ J. H. Teuben and H. J. de L. Meijer, Rec. trav. Chim., 1971, 90, 360.