Synthesis of Cyclols from Some Small Peptides via Amide-Amide Reaction

By GINO LUCENTE and AURELIO ROMEO*

(Centro di Studio per la Chimica del Farmaco-C.N.R., Istituto di Chimica Farmaceutica, Università degli Studi, 00100 Roma, Italy)

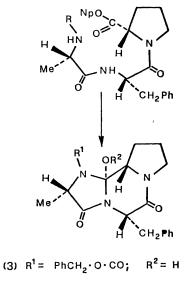
Summary The synthesis of cyclols from *p*-nitrophenyl esters of some small peptides, *via* amide-amide reaction in aqueous alkaline medium, is reported.

THERE is a long-standing suggestion that unusual bonding of amino-acids in natural products may also arise through intramolecular reactions involving amide groups.¹

Though cyclol intermediates have been suggested,²⁻⁴ only a few examples of well established cyclol structures have been reported.^{4,5} The cyclols known so far result from reaction between an amide and an alcoholic, amino-, or thiol group and only some of them are of the peptide type. Although cyclol intermediates resulting from amide-amide reaction have been suggested,³ cyclols of this type have not yet been isolated or characterised.

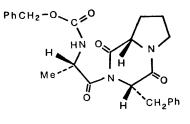
We report the synthesis of cyclols resulting from an amide-amide reaction. These compounds were obtained from p-nitrophenyl esters of small peptides such as (1), on mild treatment in an alkaline medium.[†] The cyclol system derives from an amide-amide reaction in an intermediate of the acylalanyl-diketopiperazine type (6) or of the cyclopeptide type (7).

N-Benzyloxycarbonyl-L-alanyl-L-phenylalanylhydrazide⁷ was prepared from the corresponding methyl ester; after conversion into the azide, it was condensed with L-proline to give *N*-benzyloxycarbonyl-L-alanyl-L-phenylalanyl-L-

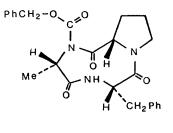

 \dagger Goodman and his co-workers have prepared N-benzyloxycarbonylglycylprolyl-diketopiperazine starting from the *p*-nitrophenyl ester of N-benzyloxycarbonylglycylproline.⁶

1606

proline[‡] m.p. 174–176°; $[\alpha]_D^{20} - 45^\circ$ (c 1.5, CHCl₃). The *p*-nitrophenyl ester (1), m.p. 109–111°, $[\alpha]_D^{20} - 48^\circ$ (c 0.5, ethyl acetate), prepared using *p*-nitrophenyl sulphite, was (c 1.0, ethanol). The i.r. spectrum showed no amide II band; in the mass spectrum the molecular peak at m/e 449 and the peak at M^+ -18 (loss of water) are in agreement


(1)
$$R = PhCH_2 \cdot O \cdot CO;$$
 $Np = p - NO_2 \cdot C_6H_4$

(2)
$$R = \rho - Br \cdot C_6 H_4 \cdot CH_2 \cdot O \cdot CO;$$
 $Np = \rho - NO_2 \cdot C_6 H_4$



(4) $R^1 = \rho - Br \cdot C_6 H_4 \cdot C H_2 \cdot O \cdot CO; R^2 = H$

(5) $R^1 = PhCH_2 \cdot O \cdot CO; R^2 = Me$

(6)

(7)

added to a dioxan-aqueous buffer§ solution (1:1) and was left at room temperature for 1 h; we attribute the structure (3) to the compound so formed, m.p. $183-185^{\circ}$, $[\alpha]_{D}^{20} - 32^{\circ}$

with structure (3); n.m.r. $(\text{CDCl}_3) \delta 1.30$ (d, 3H, J 6.5 Hz Me), 2.30—1.55 (m, 4H, CH₂·CH₂), 3.75—3.0 [5H, AB part of the ABX system PhCH₂·CH superimposed on $CH_2\cdot$ N

[‡] All new compounds had satisfactory microanalytical and spectral properties.

 $[\]$ Equal volumes of 0.1 \mbox{m} NaHCO3 and Na2CO3 solutions.

multiplets and $C(OH) \cdot CH \cdot N$, 3.95 (g, 1H, 1 6.5 Hz MeCH). 4.57 (broad s, 1H, exchangeable with D₂O, OH), 4.84 (1H, X part of the ABX system PhCH₂·CH), 5·16 (s, 2H, $PhCH_2 \cdot O \cdot CO$), and $7 \cdot 5 - 7 \cdot 0$ (m, 10H, aromatic H). Compound (3) has acidic properties (it is soluble in 1n-NaOH from which it is reprecipitated on acidification) and reacts with CH₃I-Ag₂O giving the corresponding O-methyl ether (5), m.p. 143–144°, $[\alpha]_{D}^{20} - 23^{\circ}$ (c 1.0, CHCl₃); n.m.r. $(CDCl_3)$ 3.02 (s, 3H, OMe).

To confirm the structure, we prepared p-bromobenzyloxycarbonyl-L-alanyl-L-phenylalanyl-L-proline from L-alanyl-L-phenylalanyl-L-proline⁸ on acylation with p-bromo-

- ¹ D. Wrinch, *Nature*, 1936, **137**, 411; 1937, **139**, 972. ² D. Wrinch, "Chemical Aspects of Polypeptide Chain Structures, and the Cyclol Theory", Munksgaard, Copenhagen, 1956.

- ² D. Wrinch, "Chemical Aspects of Polypeptide Chain Structures, and the Cycloi Theory", Munksgaard, Copenhagen, 1956.
 ³ G. I. Glover, R. B. Smith, and H. Rapoport, J. Amer. Chem. Soc., 1965, 87, 2003.
 ⁴ M. M. Shemyakin, V. K. Antonov, A. M. Shkrob, V. I. Shchelokov, and Z. E. Agadzhanyan, Tetrahedron, 1965, 21, 3537.
 ⁵ A. Stoll, Fortschr. Chem. org. Naturstoffe, 1952, 9, 114; A. Hofmann, A. J. Frey, and H. Ott, Experientia, 1961, 17, 206; M. Rothe and R. Steinberger, Angew. Chem. Internat. Edn., 1968, 7, 884; M. Rothe, T. Toth, and D. Jacob, ibid., 1971, 10, 128.
 ⁶ M. Goodman and K. C. Stueben, J. Amer. Chem. Soc., 1962, 84, 1279.
 ⁷ E. Schröder, Annalen, 1964, 679, 207.
 ⁸ S. Bainger and T. Löver, Acta Chim. Acad. Sci. Humg. 1966, 48, 111.

- ⁸ S. Bajusz and T. Lázár, Acta Chim. Acad. Sci. Hung., 1966, 48, 111.
 ⁹ See following communication, by S. Cerrini, W. Fedeli, and F. Mazza.

benzyloxycarbonyl chloride. On treatment as for compound (1), the p-nitrophenyl ester (2), m.p. 165-166°, $[\alpha]_D^{20} - 49^\circ$ (c 1.0, dioxan), gave a product m.p. 167—168°, $[\alpha]_D^{20} - 23^\circ$ (c 1.5, CHCl₃), to which the cyclol structure (4) was assigned, on the basis of chemical and spectral properties, analogous to that of cyclol (3). This structure was further confirmed by X-ray analysis.⁹

Compounds (3) and (4) were obtained in 70% and 50%yield respectively.

(Received, July 30th, 1971; Com. 1322.)