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Some Aspects of Terpene Biosynthesis-A Model 
By BARRY M. TROST,* P. CONWAY, and J. STANTON 

(Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706) 
Suiizmary A model for non-head to tail monoterpene 

biosynthesis involving conversion of the artemisyl 
skeleton into the chrysanthemyl skeleton is proposed and 
supported by the solvolytic conversion of an artemisyl 
sulphonium salt into a chrysanthemic derivative ; the 
relationship to squalene biogenesis is discussed. 

MUCH speculation centres around the conversion of farnesyl 
pyrophosphate into squa1ene.l With the isolation of a 
cyclopropylcarbinol as an intermediate in the biosynthesis,2 
an obvious link between the non-head to tail monoterpenes, 
chrysanthemol (1), santolinatriene (2) , yomogi alcohol (3) , 
artemisia alcohol (4), and lavandulal, is established.le f3  

Scheme 1 presents a unified proposal for the biogenetic 
relationships of these compounds and their conversion into a 
head to head monoterpene (5).  The transformation of the 
chrysanthernyl skeleton to (5)  represents the monoterpene 
equivalent of the presqualene alcohol to squalene con- 
version. 

To test this proposal, generation of cation (6) from a 
mimic of the biological precursor, sulphonium salt (7) (Scheme 
2), was undertaken. Alkylation of artemisylmethyl thio- 
ether (8) with trimethyloxonium fluoroborate generates an 
exceedingly labile sulphonium salt. Keeping it below 
-40" allowed its isolation as a crystalline white solid. 
Its structure was supported by the n.m.r. spectrum. In 
particular the diastereotopic S-Me and saturated C-Me 
groups appear as singlets a t  8 2.75, 2.62, 1.35, and 1.16, 
respectively. The methine proton (He) appears as a 
triplet ( J  - 7 Hz) at 8 4-32. Confirmation that no skeletal 
rearrangement occurred was obtained by sodium in liquid 
ammonia reduction to diene (9). 
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SCHEME 1. Proposed monoteypeneIbiogenesisa lb 

a Classical carbonium ions are written only for clarification. 
b It should be noted that the two dimethylallyl units of the 

bis-(y, y-dimethylally1)-sulphonium salt precursor are enantio- 
topic and would be treated nonequivalently by an enzymatic 
system. Thus, the observation that the two halves of artemesia 
ketone are enzymatically differentiated is fully accounted for by 
this proposal. 
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SCHEME 2. 
sulphonium jluoroborate 

Generation and solvolysis of SS-dimethyl-S-artemisyl- 

Solvolysis in aqueous acetone generated (1 1) (R = H) 
almost exclusively. In fact, this sequence serves as an 
excellent synthetic route to yomogi alcohol. Alternatively, 
alcoholic solvolysis generates a plethora of products. The 
major product(s) in all cases arises by direct trapping of the 
ally1 cation (6). In methanol (10) (R=Me) and (11) 
(R=Me) account for over 70% of the product. 

The identification of the minor constituents was hampered 
by the small quantities available. Synthetic samples of 
(12), (13), and (14) (R=Me) were made available by 
independent unambiguous routes. 7 By gas chromato- 
graphic and spectral comparisons, the synthetically avail- 
able compounds were identified in the solvolysis mixture. 
Thus, the presence of (12), (13), and (14) (R=Me), although 
present in only less than 2% yield each, was confirmed. 

The observation of the conversion of an artemisyl skeleton 
into chrysanthemyl and santolinyl skeletons does necessi- 
tate consideration being given to a similar sequence in viv0.4 
Such a proposal is in contrast to the presently considered 
pathways invoking the chrysanthemyl skeleton as the pre- 
cursor of the artemisyl and santolinyl s y ~ t e m s . ~  Further- 
more, the presence of (14) , the product of net head to head 
coupling of two y, y-di-methylallyl units, requires consider- 
ation to a similar pathway being operative in the 
farnesol to squalene conversion. 
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The independent synthetic routes will be reported in our full account of this work. 
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