The Relationships between ¹³C Nuclear Magnetic Resonance Parameters, *trans-***Influences, and Ligand Reactivities for Methylplatinum Compounds**

By M. H. CHISHOLM, H. C. CLARK,* L. E. MANZER, and J. B. STOTHERS (Department *of* Chemistry, University *of* Western Ontario, *Londou,* Canada)

tivities of these complexes. the trans-influences and ligand reactivities.

Summary ¹³C n.m.r. parameters for a series of neutral and WE report new ¹³C n.m.r. data¹ for a variety of methylcationic methylplatinum compounds are reported and platinum complexes (see Table) which show that these discussed in terms of trans-influences and ligand reac- parameters can yield valuable information regarding

¹⁸C and ¹H n.m.r. data for cationic and neutral methylplatinum complexes

1628

The $trans\text{-influence}^2$ is believed to arise from a rehybridisation of platinum σ -orbitals in response to changes in orbitals on the ligand used in σ -bonding.^{2,3} Thus, within a series, ${e.g.}$ *trans-* $[PtH(L) (PEt₃)₂]$ ⁺ } as the σ -donor properties of the ligantl L, increase *so* the Pt-L bond gains in Pt 's' and 'd' and loses 'p' character; conversely the bond *trans* to the ligand gains in Pt ' p' and loses 's' and 'd' character.⁴ ¹J- $(155Pt-31P)$ and $1/(155Pt-1H)$ for tertiary phosphine- and hydrido-platinum complexes are believed to be dominated by the Fermi contact contribution and within a compound or a related series $\{e.g. \text{cis-PtMeCl}(PR_3)_2 \text{ or } \text{trans-}\text{[PtH]}(L)\}$ $(PEt₃)₂$ ⁺} the magnitude of these platinum coupling constants has been related specifically to the α^2_{Pt} term--the Pt 6s orbital contribution in the Pt-P or Pt-H bond.^{2,4,5} Since the Pt-C bond of a methylplatinum group is covalent and σ in character, values of $\frac{1}{\ell}$ ¹⁹⁵Pt⁻¹³C) should similarly reflect the hybridisation of platinum and the nature of the trans-ligand. That this is *so* may be seen in the values of $1/(195 \text{Pt} - 13 \text{C})$ (see Table) for the compound fac-Me₃Pt- $(AsMe₃)₂$ l and for the series trans-[PtMe(L) $(AsMe₃)₂$]⁺. Hence, me obtain the decreasing trans-influence series of L, $C(OME)Me > CO \geq MeNC > C_6F_5CN$. Previously for some cationic methylplatinum complexes, we have formulated trans-influence series on values of $\frac{3}{1}$ (195Pt–C-1H) for the methylplatinum group and assumed that this indirect coupling was proportional to the Pt *'s'* character used in the Pt-C bond.⁶ A plot of ² $I(^{195}Pt-C^{-1}H)$ against¹ $I(^{195}Pt-$ ¹³C) for the complexes trans-[PtMe(L)(AsMe₃)₂]⁺ gives a straight line which passes through the origin and therefore supports the use of $^{2}J(1^{95}Pt-C^{-1}H)$ in the elucidation of the trans-influence of L. It is significant that $1/(1^{185}Pt-13C)$ for the methylplatinum group in *trans*- $[PtMe(L)(AsMe₃)₂]$ is 470 and 476 Hz when $L = CO$ and CNMe respectively. We have recently noted⁷ the similar n.m.r. trans-influence of methyl and trifluoromethyl groups in complexes *trans*-[PtX(L)- $(PMe₂Ph₂]⁺$ where $X = Me$ or $CF₃$. Thus it appears that the trans-influence of a ligand is dominated by the nature of its σ -bonding orbital and that its electronegativity and π -acceptor properties have little effect on the *trans-o-bond*.

The complexes *trans*- $[PtMe(L)(AsMe₃)₂]$ ⁺ where $L = CO$ and C(OMe)Me, allow a comparison of $1/(195 \text{Pt}-13 \text{C})$ for approximately *sp3, sp2,* and *sp* hybridised carbon atoms. Since the 's' character of the carbon hybrid orbital used in the Pt-C bond is contained within the Fermi contact equation for $\frac{1}{1}$ (195Pt-13C), the observed magnitudes of these couplings, $CO > C(OMe)Me > Me$ is not surprising [cf. ref. 8 for hydrocarbons where $\frac{1}{1}$ ($\frac{13C-1H}{1}$) \sim 125 for C(sp³), \sim 160 for *C*($s\phi^2$), and \sim 250 for *C*($s\phi$)] and therefore this order does not necessarily correlate with bond strength.

The carbonyl carbon resonance in $trans$ -[PtMe(CO)(As- $Me₃$)⁺ occurs at a higher field than that of any previously reported^{9,10} metal carbonyl complex; and in fact, it is slightly shielded relative to carbon monoxide. This together with the high value of v_{co} 2098 cm⁻¹, indicates little Pt 'd' to carbonyl π^* -bonding. This lack of Pt π -backbonding is responsible for the susceptibility of the carbonyl carbon atom towards nucleophilic attack¹¹

 $Pt^+ \leftarrow CO + ROH \rightleftharpoons Pt(CO)OR + H^+$

The central carbon of the $C(OMe)$ Me moiety at $321·l$ p.p.m. downfield from Me₄Si clearly indicates the marked positive charge on this carbon; indeed a comparison with ^{13}C shieldings for organic compounds shows that this deshielding is comparable to that found for tertiary alkyl carbonium ion carbons.¹² We have previously proposed¹³ that the formation and reactivity of these cationic alkosycarbene complexes may be interpreted as reactions of platinum-stabilised or platinum-induced carbonium ions. Recently Randall *et al.*¹⁰ reported ¹³C n.m.r. data for $(CO)_5$ CrC(OMe)-Me in which the carbene carbon appeared at $+362.2$ p.p.m. from $Me₄Si$. Thus we feel that all metal-carbene complexes may be considered as metal stabilised carbonium ions, a model which closely reflects their chemical and physical properties.

(Receiwd, October 14th, 1971; Corn. **1817**

- ¹ For recent data for related compounds see A. J. Cheney, B. E. Mann, and B. L. Shaw, *Chem. Comm.*, 1971, 431.
- **A. I'idcock,** R. **E.** Richards, and L. **M.** Venanzi, *J. Chevlz. SOC. (A),* 1966, 1707.
- S. S. Zumdahl and **R.** S. Drago, *J. Amev. Chem. SOC.,* 1968, **90,** 6669. M. 1. Church and **31. J.** Mays, *J. Chenz. SOC. (A),* 1970, 1038.
-
- M. J. Church and M. J. Mays, *J. Chem. Soc.* (A), 1968, 3074; F. M. Allen and A. Pidcock, *ibid.*, 1968, 2700.
M. H. Chisholm and H. C. Clark, *Inorg. Chem.*, 1971, 10, 1711.
-
- ⁷ T. G. Appleton, M. H. Chisholm, H. C. Clark, and L. E. Manzer, *Inorg. Chem.*, submitted for publication.
- 8 N. Muller and D. E. Pritchard, *J. Chem. Phys.*, 1959, **31**, 768. See J. B. Stothers in "Carbon-13 N.M.R. Spectroscopy," Ac: demic Press, New York, 1972, for a general discussion.
- * B. E. Mann, *Chem. Comrn.,* 1971, 976; G. F. Emerson, **I<.** Ehrlich, W. P. Giering, and P. C. Lauterbur, *J. Anzer. Chem. SOC.,* 1966, *88,* 3172.
- ¹⁰ L. F. Farnell, E. W. Randall, and E. Rosenberg, *Chem. Comm.*, 1971, 1078.
- **¹¹**H. C. Clark, K. R. Dixon, and **\V.** J. Jacobs, *J. Amev. Chem. SOL,* 1965,90, **2259;** 1969, **91,** 1346; J. E. Byrd and J. Halpern *ibid.,* 1971, 93, 1634.
-
- **l2** G. **A.** Olah and **A.** M. White, *J. Asner. Chewz. SOL,* 1969, **91,** 5801. **laM. H.** Chisholm, H. *C.* Clark, and D. **H.** Hunter, *Chem. Comm..* 1971, 809.
- **¹⁴**H. **C.** Clark and L. E. BIanzer, *Inorg. Chem.,* in the press.