The X-Ray Crystal and Molecular Structure of $(\pi$ -C₅H₅)₂Mo(SBuⁿ)₂FeCl₂, a Model Compound of the Nitrogenase System

By T. S. CAMERON and C. K. PROUT*

(Chemical Crystallography Laboratory, South Parks Road, Oxford OX1 3QS)

Summary The crystal and molecular structure of $(\pi-C_5H_5)_2Mo(SBu^n)_2FeCl_2$ has been determined and the molybdenum and iron atoms shown to be linked by a double sulphide bridge, $Mo \cdots Fe \ 3.66 \text{ Å}$.

RECENT investigations suggest that sulphur-bridged molybdenum, iron systems are a significant feature of nitrogenase enzymes.¹ We report the crystal and molecular structure of the model compound (I), prepared by Dias and Green.²

Crystal data: $C_{18}H_{28}Cl_2FeMoS_2$ (I), $M = 531\cdot24$, monoclinic, $a = 8\cdot483$, $b = 19\cdot686$, $c = 14\cdot504$ Å, $\gamma = 116\cdot7^{\circ}$. $D_m = 1\cdot61$, Z = 4, $D_c = 1\cdot623$ g cm⁻³, space group $P2_1/b$ (C_{2h}° , No. 14) Mo- K_{α} radiation, $\mu = 10\cdot32$ cm⁻¹. 1885 independent reflections were measured with a Hilger and Watts linear diffractometer.

The crystal structure was determined by the heavy-atom method and refined by full-matrix least-squares, initially with isotropic and subsequently with anisotropic temperature factors on all atoms. After 6 cycles the R factor is 7%, hydrogen atoms have not yet been located, and the terminal atoms of the n-butyl groups show large thermal motions. Refinement is proceeding.

The molecule with important interatomic distances and interbond angles, is shown projected down c in the Figure. The cyclopentadienyl groups are in the staggered configuration, and the $(\pi$ -C₅H₅)₂MoS₂ system is not significantly different from that found in bis- π -cyclopentadienyltoluenedithiolatomolybdenum(IV).³ The n-butyl groups, bonded to the bridging sulphur atoms are each on the same side of the MoS₂ plane; this plane is inclined at an angle of 148° to the FeS₂ plane. The metal atoms are bent away from the sulphur lone pair electrons towards the α carbon atoms of the n-butyl groups. This relieves the coulombic repulsion between the sulphur lone pairs and the electrons of the

Cl-Fe and $(\pi$ -C₅H₅)-Mo bonds. The tetrahedral environment of the iron atom permits this deformation without serious steric repulsions between the chlorine atom and the adjacent π -cyclopentadienyl group both on the opposite side of the sulphur bridge to the sulphur lone-pair electrons.

The Mo-Fe distance 3.66 Å, is somewhat shorter than the Cr–W distance⁴ 3.93 Å, in $(\pi$ -C₅H₅)₂W(SPh)₂Cr(CO)₄ or the Mo-Rh distance⁵ 3.88 Å in $(\pi$ -C₅H₅)₂Mo(SMe)₂Rh $(\pi$ -allyl)₂⁺ but longer⁴ than the supposed metal-metal bond 3.32 Å in $(\pi - C_5 H_5)_2 Ti(SMe)_2 Mo(CO)_4$ and very much longer than the Mo-Sn bond⁶ 2.66 Å, in $(\pi$ -C₅H₅)₂Mo(Cl)SnCl₃. The relatively short Mo-Fe distance can be attributed to the shorter Fe-S bonds (2.38 Å cf. Cr-S 2.49 Å) and to the deformation of the bridging system. Similar deformations are not observed in the $(\pi$ -C₅H₅)₂W(SPh)₂M(CO)₄ (M = Cr, Mo, or W) compounds or in $(\pi C_5 H_5)_2 Mo(SMe)_2 Rh(\pi-allyl)_2^{+-}$ PF₆⁻ complexes,⁶ because such deformations would need too close an approach between either a carbonyl or a π -allyl group and a π -cyclopentadienyl ligand.

We thank the S.R.C. for a fellowship (to T.S.C.).

(Received, December 8th, 1970; Com. 2120.)

¹ J. T. Spence, Coordination Chem. Rev., 1969, 4, 475; W. F. Hardy and G. W. Parshall, Science, in the press.

² A. R. Dias and M. L. H. Green, *Chem. Comm.*, 1969, 962. ³ J. R. Knox and C. K. Prout, *Acta Cryst.*, 1969, **B25**, 2013.

⁴T. S. Cameron, M. L. H. Green, C. K. Prout, G. V. Rees, K. K. Joshi, G. R. Davies, B. T. Kilbourn, P. S. Braterman, and V. A. Wilson, Chem. Comm., 1970, 14. ⁵ G. V. Rees and C. K. Prout, unpublished results.

⁶ T. S. Cameron and C. K. Prout, unpublished results.