The Biosynthesis of Gliotoxin; Possible Involvement of a Phenylalanine Epoxide

By N. JOHNS and G. W. KIRBY*

(Chemistry Department, University of Technology, Loughborough, Leicestershire LE11 3TU)

Summary Phenylalanine is incorporated, by Trichoderma viride, into gliotoxin ca. 100 times more efficiently than is m-tyrosine: incorporation of DL-[3-3H]phenylalanine occurs without loss or migration of tritium suggesting the involvement of an arene oxide intermediate.

PHENYLALANINE is well established¹⁻³ as a biosynthetic precursor for the fungal toxin, gliotoxin (1). Also, Winstead and Suhadolnik² reported that generally tritiated *m*-tyrosine was incorporated considerably more efficiently (30.8 and 44.3%) than phenylalanine (14.2 and 17.6%) into this metabolite. The biological hydroxylation of phenylalanine to give *m*-tyrosine might, in principle, involve an arene oxide⁴ intermediate [(2) or (3)] having the appropriate functionality to cyclise directly to the unusual dihydrobenzenoid system of gliotoxin. Either intermediate could give the required *trans*-stereochemistry in the end product. We report a reinvestigation of the status of *m*-tyrosine as a gliotoxin precursor.

Radio-labelling of DL-m-tyrosine[†] was effected in tritiated 5N-HCl at 100° for 1 h. A control experiment in DCl showed (n.m.r.) that nuclear exchange had occurred, at least predominantly, ortho and para to the phenolic hydroxy-group. DL-[2,4,6-³H₃]-m-Tyrosine was fed to *Trichoderma viride* (strain NRRL-1828) under prescribed¹ conditions. Only a small (0.0095%) incorporation of tritium into gliotoxin was observed (see Table) although no tritium from the site of attack. DL- $[3-^{3}H]$ Phenylalanine (4), prepared from 3-bromotoluene via $[3-^{3}H]$ toluene, was

Incorporation of phenylalanine and m-tyrosine into gliotoxin in Trichoderma viride

Precursor; wt. ((mg);		⁸ H : ¹⁴ C	% Incorp.	Wt. of (1) (mg)	³ H: (1)	¹⁴ C Ratios (6)	in (7)
DL- $[2,4,6-{}^{3}H_{3}]-m$ -Tyrosine	•••••	20 0:07	11.5	4.9	233	ca. 0·1		
$DL-[2,4,6-^{3}H_{8}]-m$ -Tyrosine .	•••••	9·6 9·3	11.9	1.6	159	ca. 0·1		
DL- $[2,4,6^{-3}H_3]$ -m-Tyrosine DL- $[1^{-14}C,3^{-3}H]$ Phenylalanine DL- $[1^{-14}C,3^{-3}H]$ Phenylalanine	· · · · · · · · · · · · · · · · · · ·	8.6 13 17	7·07 6·51	$9.5 imes 10^{-3} \ 3.9 \ 2.1$	$215 \\ 189 \\ 215$	7·51 6·73	7·51 6·79	$3.91 \\ 3.59$

significant loss of tritium from the precursor occurred under the same conditions in the absence of the organism. In a more decisive experiment, a mixture of $DL-[2,4,6^{-3}H_3]$ -mtyrosine and $DL-[1^{-14}C]$ phenylalanine ($^{3}H:^{14}C$ ratio, 11.5) was incubated with *T. viride*. Tritium was barely detectable in the derived gliotoxin ($^{3}H:^{14}C$ ratio, *ca.* 0.1)‡ although good incorporation ($^{4}\cdot 9\%$) of ^{14}C was observed. A similar result was obtained when the relative weights of the two amino-acids were changed *ca.* 300 fold. It appeared therefore unlikely that, under the conditions of our experiments, *m*-tyrosine could be an obligatory intermediate in the conversion of phenylalanine into gliotoxin. However, a further test was made. Hydroxylation of phenylalanine to give *m*-tyrosine must involve loss or migration⁵ of mixed with DL-[1-¹⁴C]phenylalanine and the doublelabelled specimen incubated with *T. viride*. No loss of tritium occurred during conversion into gliotoxin [labelling pattern (5)]. Dehydration and desulphurisation§ gave the derivative (6) again without loss of tritium. Finally, dehydrogenation⁶ gave dehydrogliotoxin (7) with retention of 52% of the tritium. Repetition of the entire experiment gave essentially the same results which are fully consistent with a biosynthetic intermediate of the type (2) or (3). Circumstantial evidence for this possibility is provided by the structures of the aranotins which contain an oxepin ring plausibly attributed⁷ to valence tautomerism of a phenylalanine epoxide.

Bu'Lock and Ryles⁸ have recently published independent

[†] The purity and identity of commercially available (Koch-Light Ltd.) *m*-tyrosine was checked by chromatography, n.m.r. spectroscopy, and conversion, with dimethyl sulphate and alkali, into *m*-methoxycinnamic acid.

[‡] Accurate measurement of small tritium activities in the presence of ¹⁴C is not possible.

§ Effected with grade I, neutral alumina in dry benzene at room temperature (cf. ref. 3).

We thank Dr. R. J. Stretton and Mr. J. Watson-Walker for advice and microbiological facilities and the S.R.C. for financial support.

(Received, November 30th, 1970; Com. 2066.)

¹ R. J. Suhadolnik and R. G. Chenoweth, J. Amer. Chem. Soc., 1958, 80, 4391; A. K. Bose, K. S. Khanchandani, R. Tavares, and P. T. Funke, *ibid.*, 1968, 90, 3593.
² J. A. Winstead and R. J. Suhadolnik, J. Amer. Chem. Soc., 1960, 82, 1644.
³ A. K. Bose, K. G. Das, P. T. Funke, I. Kugachevsky, O. P. Shukla, K. S. Khanchandani, and R. J. Suhadolnik, J. Amer. Chem. Chem. Soc., 1960, 82, 1644.

Soc., 1968, 90, 1038.

⁴D. M. Jerina, J. W. Daly, B. Witkop, P. Zaltzman-Nirenberg, and S. Udenfriend, J. Amer. Chem. Soc., 1968, 90, 6525 and references cited.

⁶ G. Guroff, J. W. Daly, D. M. Jerina, J. Renson, B. Witkop, and S. Udenfriend, *Science*, 1967, 157, 1524.
⁶ G. Lowe, A. Taylor, and L. C. Vining, *J. Chem. Soc.* (C), 1966, 1799.
⁷ N. Neuss, R. Nagarajan, B. B. Molloy, and L. L. Huckstep, *Tetrahedron Letters*, 1968, 4467.

⁸ J. D. Bu'Lock and A. P. Ryles, Chem. Comm., 1970, 1404.

gliotoxin as the major deuteriated metabolite.