An Unusual Thermal trans \rightarrow cis Rearrangement

By E. A. Allen,* N. P. JOHNSON, D. T. ROSEVEAR, and W. WILKINSON (Department of Chemistry, Portsmouth Polytechnic, Portsmouth POI 3QL)

Summary The thermal trans→cis rearrangement of dichlorobis(pentamethylenesulphide)platinum(II) is reported.

As part of the work on the co-ordinating ability of ligands containing donor atoms of Group VIB¹ we have studied the thermal behaviour of a series of dialkyl sulphide complexes of the form MX_2L_2 , where M = Pd or Pt, X = halogen, and L = a dialkyl sulphide. The platinum complexes with pentamethylene sulphide (PMS) have proved particularly interesting since for these compounds there is strong evidence for thermal $trans \rightarrow cis$ isomerisation. Although several examples of thermal $cis \rightarrow trans$ isomerisation have been noted² very few observations of $trans \rightarrow cis$ rearrangements appear to have been reported.

The Figure shows d.t.a. traces for the $PtX_2(PMS)_2$ complexes. Comparison of these traces with thermogravimetric data³ indicates that the large relatively broad endothermic peaks (D) correspond to the decomposition of the complexes to the metal halide. The decomposition peak in the d.t.a. traces is preceded by a very sharp endothermic peak (C) which corresponds to the m.p. of the complex. Comparison of the traces for the corresponding trans- and cis-isomers show that the melting and decomposition curves are very similar. The results are summarised in the Table.

For the *trans*-isomers there is, in addition, an endothermic peak (A), T_{max} 146 and 132° for the chloride and bromide, respectively. In both cases this is closely followed by a smaller exothermic peak (B). We conclude that the

FIGURE. D.t.a. traces for various pentamethylene sulphide complexes of platinum; (i) trans-PtCl₂(PMS)₂; (ii) trans-PtBr₂(PMS)₂; (iii) cis-PtCl₂(PMS)₂; (iv) cis-PtBr₂(PMS)₂.

¹E. A. Allen, N. P. Johnson, D. T. Rosevear, and W. Wilkinson, J. Chem. Soc. (A), 1970, 2137.

- ² M. I. Ivanova, Zhur. neorg. Khim., 1957, 2, 1317, 1324, 1775.
- ³ E. A. Allen and W. Wilkinson, to be published.
- ⁴G. Beech, G. Marr, and S. J. Ashcroft, J. Chem. Soc. (A), 1970, 2903.

additional endothermic peaks correspond to a solid-solid phase change, similar peaks having been observed with other dialkyl sulphide complexes. Such peaks have been shown to be reversible.³ The exothermic peak (B) can be associated with the isomerisation of the *trans*- to the *cis*complex. Evidence for this type of rearrangement is obtained from the far i.r. spectra. Heating of the *trans*isomers to just below their m.p.'s resulted in products of much paler colour whose far i.r. spectra were virtually identical with the corresponding *cis*-isomer, *i.e.* v_{max} (Pt-Cl) for *trans*-PtCl₂(PMS)₂ before heating was at 345 cm⁻¹; after heating it occurred at 326 and 312 cm⁻¹. v_{max} (Pt-Cl) for *cis*-PtCl₂(PMS)₂ is at 324 and 311 cm⁻¹.

The thermal $trans \rightarrow cis$ rearrangement was not observed for the analogous platinum dimethyl sulphide, diethyl

Maximum temperatures (T_{max},°) of d.t.a. peak (see Figure)

			Α	в	С	D
trans-PtCl2(PMS)2			146	152	179	288
cis-PtCl ₂ (PMS) ₂	••	••			180	294
trans-PtBr ₂ (PMS) ₂	••		132	142	153	304
cis-PtBr ₂ (PMS) ₂	••	••			152	305

Sample size approx. 20 mg diluted in alumina. Nominal heating rate 10° min⁻¹ in an atmosphere of nitrogen.

sulphide, and tetramethylene sulphide complexes and it is possible that the rearrangement of the platinum pentamethylene sulphide complexes is related to crystal structure effects. Preliminary studies using a differential scanning calorimeter to measure the heat change involved in the *trans*→*cis* isomerisation give a value of around 21 kJ mol⁻¹ for the *trans*→*cis*-PtCl₂(PMS)₂ reaction. This value is similar to that found for the *cis*→*trans* isomerisation of PtCl₂(C₅H₅N)₂.⁴

(Received, December 7th, 1970; Com. 2106.)