Tetrahydrido-complexes of Molybdenum

By FILIPPO PENNELLA

(Phillips Petroleum Company, Research and Development Department, Bartlesville, Oklahoma 74004)

Summary The synthesis and spectral characteristics of the complexes $(PR_3)_4MoH_4$ (PR₃ = tertiary phosphine) are described.

TERTIARY phosphine- and arsine-hydrido-complexes containing more than three hydrogen ligands bonded to the metal have been described for several third-row transition metals.^{1,2} For second-row metals only one such complex, (Ph₃P)₃RuH₄, has been reported,³ but apparently it was not isolated. We have now prepared the molybdenum hydridocomplexes $(PR_3)_4MoH_4$ $(PR_3 = MePh_2P, EtPh_2P)$ and (Ph₂PCH₂CH₂PPh₂)₂MoH₄ by the reaction of cis-(PR₃)₂-MoCl₄ and an excess of ligand in ethanolic NaBH₄. The complexes, recrystallized from C₆H₆-MeOH, are yellow, soluble in non-polar solvents and moderately stable in air. They have been characterized by chemical analysis, magnetic measurements, and i.r. and n.m.r. spectra.

The compounds are diamagnetic. They are characterized as hydrido-complexes by their i.r. spectra (ν_{M-H} in the 1700-1850 cm⁻¹ region and δ_{M-H} in the 600-800 cm⁻¹ region); thus $(MePh_2P)_4MoH_4$ shows bands at 1800, 1714, 775, and 640 cm⁻¹, which in the deuteride are shifted to 1293, 1235, 558, and 460 cm⁻¹, respectively. The diphosphine complex was insufficiently soluble for n.m.r. measurements. The high-field n.m.r. spectra of the monodentate phosphine complexes in $C_{6}D_{6}$ show a quintet pattern with an intensity

ratio 1:4:6:4:1, which for $(EtPh_2P)_4MoH_4$ is centred at τ 12·20, $J_{\rm P,H}$ 34 Hz. Intensity measurements indicate 4 hydridic hydrogens per molybdenum.

Identical chemical shifts for all hydride ligands and splitting patterns indicating magnetic equivalence of the phosphorus nuclei have also been observed for the phosphine polyhydrido-complexes of third-row metals.^{1,2} The high-field spectra¹ of (PR₃)₃WH₆, (PR₃)₃ReH₅, and $(PR_3)_3OsH_4$ show quartet patterns, but the hexacoordinated (PR₃)₃IrH₃ complexes give spectra which allow determination of their stereochemistry.² Among hydridocomplexes of the second-row metals, (Ph₃P)₃RuH₄ shows only a broad signal in the high-field region with the loss of fine structure resulting from ligand dissociation in solution.⁴ The rhodium homologues of the molybdenum tetrahydride $(PR_3)_4RhH$ $[PR_3 = MePh_2P, 5 P(O-aryl)_3^6]$ also show a quintet pattern, while the hexaco-ordinated ruthenium homologue (MePh₂P)₄RuH₂ gives a spectrum which characterizes its stereochemistry.5

The apparent magnetic equivalence of the hydride ligands, which has been attributed¹ to strong phosphorusphosphorus coupling or to rapid intramolecular rearrangement of the hydride ligands, seems to be a phenomenon widespread among transition metal complexes other than tetra- or hexaco-ordinated.

(Received, November 23rd, 1970; Com. 2026.

- ¹ P. G. Douglas and B. L. Shaw, J. Chem. Soc. (A), 1970, 334 and references therein.
 ² B. E. Mann, C. Masters, and B. L. Shaw, Chem. Comm., 1970, 703, 846.
 ³ T. Ito, S. Kitazume, A. Yamamoto, and S. Ikeda, J. Amer. Chem. Soc., 1970, 92, 3011 and references therein.
- ⁴ F. Pennella and M. R. Rycheck, unpublished results.
 ⁵ K. C. Dewhirst, W. Keim, and C. A. Reilly, *Inorg. Chem.*, 1968, 7, 546.
- ⁶ J. J. Levison and S. D. Robinson, Chem. Comm., 1968, 1405.