Synthesis of 3-Methoxy-6,16-dioxo-9aH-gibba-A-triene and Stereochemistry of a Diels-Alder Reaction

By A. J. Baker* and A. C. Goudie
(Department of Chemistry, University of Glasgow, Glasgow, W.2)

Summary A stereospecific synthesis of 3-methoxy-6,16-dioxo- $9 \alpha H$-gibba-A-triene has been achieved in good yield, starting with a Diels-Alder reaction, the major products from which violate the cis-addition principle.

Recently syntheses of several hydrofluorene ${ }^{1}$ and gibbane ${ }^{2}$ derivatives, potential intermediates for the total synthesis of gibberellins, have been described. We report here an efficient synthesis of 3 -methoxy-6,16-dioxo- $9 \alpha \mathrm{H}$-gibba-Atriene ${ }^{3}$ (IX) and the unexpected trans-orientation in the Diels-Alder reaction of itaconic acid (I) with methyl-5-p-methoxyphenyl)-trans,trans-penta-2,4-dienoate (II) \dagger of rigorously established stereochemistry.

Condensation of (I) with (II) without solvent for 8 h at 160° produced in 80% yield a mixture of three stereoisomeric adducts. 60% of the mixture consisted of the quasiaxial and quasi-equatorial esters (IIIa) and (IIIb) in the ratio $1: 2 \cdot 3$; the third adduct was the quasi-equatorial ester (IIIc) epimeric with (IIIb) at C-1.4 Stereochemistry to these adducts was assigned as follows. Hydrogenation (ethyl acetate, PtO_{2}) to the corresponding cyclohexane derivatives (IVa, b, and c) followed by methanolysis afforded a mixture of acids (Va, b, and c) in the same isomer ratio as the initial adducts (determined by g.l.c.). The acid (Va), m.p. $150-152^{\circ}$, was separated readily, because of its very low solubility in methanol, and shown to be axial at C-5 by its quantitative epimerisation ($\mathrm{MeOH}, \mathrm{NaOMe}$) to (Vb).

The fact that the equatorial trimethyl ester (VIb), m.p. 102-103 ${ }^{\circ}$, [from (Vb) with diazomethane] underwent quantitative Dieckmann cyclisation (benzene, NaOMe)-of necessity in the alternative chair diaxial conformation-to the bicyclo [3,2,1]octan-6-one (VII) m.p. 112-114 ${ }^{\circ}$, whereas similar conversion of the axial trimethyl ester (VIa), m.p. $98-99^{\circ}$, into (VII) proceeded more slowly, and via (VIb), established the cis-diequatorial relationship of the C-1$\mathrm{CH}_{2} \cdot \mathrm{CO}_{2} \mathrm{Me}$ and $\mathrm{C}-5-\mathrm{CO}_{2} \mathrm{Me}$ groups in (VIb) and hence in (IIIb).

Compound (VII) was converted by standard methods in 70% yield into 1-carboxy-anti-2-(p-methoxyphenyl) bicyclo-[3,2,1]octan-6-one (VIIIa), m.p. 188-190 . The intramolecular Friedel-Crafts reaction of the derived acid chloride (VIIIb), using AlCl_{3} (2 mol) in benzene, afforded (90%) 3-methoxy-6,16-dioxo- $9 \alpha H$-gibba-A-triene (IX) [m.p.
$\mathrm{H}_{2} \mathrm{C}=\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{H}\right) \cdot \mathrm{CH}_{2} \cdot \mathrm{CO}_{2} \mathrm{H}$
(I)

(IIIC)
$\mathrm{Ar}-\left[\mathrm{CH}=\mathrm{CH}_{2}-\mathrm{CO}_{2} \mathrm{Me}\right.$
(II)

184-185 ${ }^{\circ}, \lambda_{\max }(\mathrm{EtOH}) 220$, ($\log \epsilon 4 \cdot 40$), 251 (4.00), and $321 \mathrm{~nm},(3 \cdot 58) ; \nu_{\max }\left(\mathrm{CCl}_{4}\right) 1711$ and $1751 \mathrm{~cm}^{-1}$], thereby establishing the cis-relationship of the C-1-carboxy and the
\dagger Compounds (II)-(X) gave satisfactory analytical and spectral data.
$\mathrm{C}-2-p$-methoxyphenyl groups and therefore the equatorial configuration of the latter group in (IIIa), (IIIb)-(VIa), and (VIb).
Application of the sequence (VI) \rightarrow (IX) to the mixture of trimethyl esters (VI) gave a readily separable mixture of (IX) and 1-carboxy-syn-2-(p-methoxyphenyl) bicyclo[3,2,1]-octan-6-one (X), m.p. 203-205 , [epimeric with (VIII) at $\mathrm{C}-2]$. The stability of (VIc) in admixture with (VIa) and (VIb) to epimerisation (as determined by g.1.c.) and its conversion into (X) established the structure of (IIIc) as shown, i.e trans-diequatorial at C-2 and C-5.

The violation of the "cis-addition principle"s in the production of (IIIb) and (IIIc) (82\% of the total mixture) is considered to occur by a thermally catalysed process, ${ }^{6}$ either in the transition state or after initial product formation to relieve the 1,3 -quasi-diaxial interactions at $\mathrm{C}-1$ and C-5 which result in the normal Diels-Alder product (IIIa). Studies of this aspect of the Diels-Alder reaction and on the conversion of (IX) into C_{19} gibberellins are in progress.

We thank the S.R.C. for financial support (A. C. G.).
(Received, December 11th, 1970; Com. 2141.)
${ }^{1}$ T. Hori and K. Nakanishi, Chem. Comm., 1969, 528, and ref. 1 and 3 therein.
${ }^{2}$ E. J. Corey, M. Narisada, T. Hiraoka, and R. A. Ellison, J. Amer. Chem. Soc., 1970, 92, 396.
${ }^{3}$ Gibberellane numbering, J. MacMillan, J. Chem. Soc. (C), 1970, 1341.
${ }^{4}$ Cf. N. Gerber, J. Amer. Chem. Soc., 1960, 82, 5216.
${ }^{5}$ K. Alder and G. Stein, Angew. Chem., 1937, 50, 510.
${ }^{6}$ T. M. Lyssy, J. Org. Chem., 1962, 27, 5.

