Isodeoxyemmolactone, a New A(1), 28-Bisnorlupane Triterpene

By M B Burbage and K. Jewers*
(Tropical Products Institute, 56-62 Gray's Inn Road, London WC1 8LT)
and R A Eade, P Harper, and J J H Simes
(School of Chemistry, Unversity of New South Wales, Kensington, NS W, 2033, Australua)

Summary Isodeoxyemmolactone has been isolated from Alanguzm villosum (Bl) Wang var vituense (A Gray) Bloemb and Emmenospermum alphitoniondes F Muell, and shown to be A(1), 28-bisnorlupa-2 17,20(29)-trien$27 \rightarrow 16 \alpha$-olde

In a recent communication we reported ${ }^{1}$ the isolation of deoxyemmolactone from the barks of Alangium villosum and Emmenospermum alphitoniordes, and showed that it was a member of the a(1), 28-bisnorlupane group of triterpenes of probable structure (1) or (2) We report now the isolation of isodeoxyemmolactone from the barks of A villosum (yield 0005%) and E alphitoniondes (the best yielding specimen of which gave 65 mg from 6 kg of bark), for which we suggest structure (3)

Isodeoxyemmolactone, $\mathrm{C}_{28} \mathrm{H}_{38} \mathrm{O}_{2}$ (elemental analyses and mass spectrum), m p 189-190,$[\alpha]_{\mathrm{D}}\left(\mathrm{CHCl}_{3}\right)-25^{\circ}$, showed strong end-absorption in the $u \mathrm{v}$ spectrum and its ir spectrum indicated the presence of a γ-lactone, a vinylidene $\left(\mathrm{C}=\mathrm{CH}_{2}\right)$ group and a cis-disubstituted double bond ($\nu_{\max } 1755,1640,881$, and $754 \mathrm{~cm}^{-1}$) The 100 MHz spectrum indicated the presence of a $c \tau s$-disubstituted double bond flanked by quaternary carbon atoms and located in a five-membered ring ($\delta 598$ and 546 , pair of doublets $2 \mathrm{H} J 55 \mathrm{~Hz}$), an isopropenyl group ($\delta 470,2 \mathrm{H}$, multiplet, $\delta 161,3 \mathrm{H}$, broadened singlet), and four tertiary methyl singlets ($\delta 108$ to $090,12 \mathrm{H}$, four singlets) It differed from the n m r spectrum of deoxyemmolactone in having a one proton doublet at $\delta 455(J 53 \mathrm{~Hz})$ instead of the one-proton multiplet at $\delta 558$ which has been attrıbuted to the tisubstituted olefinic proton of deoxyemmolactone ${ }^{1}$ Spin-decoupling experiments revealed that the doublet at $\delta 455$ was part of an ABX system, it was coupled to a oneproton doublet of doublets at $\delta 250(J 53$ and 107 Hz), which in turn was coupled to a one-proton doublet at $\delta 188(J 107 \mathrm{~Hz})$

Since all possible trisubstituted olefinic protons in a bisnorlupane skeleton would resonate as triplets or multiplets in the nmr spectrum, then isodeoxyemmolactone must contain a tetrasubstituted double bond and a γ-lactone terminating at a secondary centre Examination of molecular models of the mine possible structures for isodeoxyemmolactone showed that only (3) had dihedral angles
between $\quad \mathrm{H}_{\mathrm{A}}-\mathrm{C}(15)-\mathrm{C}(16) \mathrm{H}_{\mathrm{x}}, \quad \mathrm{H}_{\mathrm{B}}-\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{H}_{\mathrm{s}}, \quad$ and $\mathrm{H}_{\mathrm{A}}-\mathrm{C}(15)-\mathrm{H}_{\mathrm{B}}$ of the right order of magnitude, viz approximately $78^{\circ}, 33^{\circ}$, and 111°, respectively Application of the Karplus equation to these values afforded ${ }^{2}$ coupling constants $J_{\mathrm{AX}}<02 \mathrm{~Hz}, J_{\mathrm{BX}} 55 \mathrm{~Hz}$, and $J_{\mathrm{AB}} 107 \mathrm{~Hz}$ consistent with experimentally determined values

(1)

(2)

Circular dichroism studies showed that the $n \rightarrow \pi^{*}$ transition of the lactone carbonyl group in the two compounds gave rise to a positive Cotton effect in deoxyemmolactone ($\Delta \epsilon+0975,237 \mathrm{~nm}$) and a negative Cotton effect in isodeoxyemmolactone $(\Delta \epsilon-138,237 \mathrm{~nm})$ These findings are in agreement with the results obtained by application of the lactone sector rule to structures (1) and (3) ${ }^{3}$

The analytical and spectroscopic evidence suggested that isodeoxyemmolactone was (3) This was confirmed by acid-catalysed rearrangement of deoxyemmolactone to isodeoxyemmolactone The ease with which this rearrangement occurred has suggested that isodeoxyemmolactone could be an artefact, although the methods used to isolate the compound would seem to preclude this
(Received, December 29th, 1970, Com 2221)

[^0]
[^0]: ${ }^{1}$ M B Burbage, K Jewers R A Eade, P Harper, and J J H Simes, Chem Comm, 1970, 814
 ${ }^{2}$ N S Bhacca and D H Williams, "Apphcations of NM R Spectroscopy in Organic Chemistry," Holden-Day, San Francisco, 1964, p 49
 ${ }^{3}$ J P Jennings, W Klyne, and P M Scopes, Tetrahedron, 1965, 26, 7229

