The Ring Contraction Stage in Gibberellin Biosynthesis

By J. R. HANSON* and J. HAWKER

(The School of Molecular Sciences, University of Sussex, Brighton, BN1 90], Sussex)

Summary Evidence presented suggests that the ring contraction of a kauranoid diterpene to a gibbane is accompanied by a hydrogen migration from C-6 to C-7.

A UNIQUE feature of the gibberellin plant growth hormones is their five-membered ring B which is formed by rearrangement of a six-membered ring. There has been biogenetic speculation on the nature of this step. It has been shown¹ that 7β -hydroxy-(-)-kaur-16-en-19-oic acid (I) is converted into the aldehyde (II), gibberellin A₁₂ (III), and gibberellic acid (IV). Furthermore in the overall conversion into gibberellic acid, we showed that the kauranoid C-6-equatorial hydrogen atom was lost and that the axial atom was retained.² The next logical precursor to prepare was 6β , 7β -dihydroxy-(-)kaur-16-en-19-oic acid. However, this was only converted into fujenal (0.01%). There was no detectable conversion into gibberellic acid. At this stage in our work, Cross reported³ the same negative result. An alternative which we have considered,² is that the ring contraction may be initiated by the abstraction of the 6β hydrogen itself. We now present evidence for the fate of this hydrogen atom.

Tabli	¢
-------	---

Geraniol			⁸ H: ¹⁴ C	No. of ${}^{3}H$
Geramor	••	••	10.1	—
(-)-Kaurene		••	9.1:1	1.8(2)
7-Hydroxykaurenolide			6.0:1	1.2(1)
Gibbane aldehyde (II) ^a	••		9.7:1	1.9 (2)
Gibberellic acid (IV) b	••	••	5.7:1	1·1 (1)

* As its methyl ester semicarbazone.

^b As its methyl ester.

¹ J. R. Hanson and A. F. White, Chem. Comm., 1969, 410.

² R. Evans, J. R. Hanson, and A. F. White, J. Chem. Soc. (C), 1970, 2601.

³ B. E. Cross, J. C. Stewart, and J. L. Stoddart, *Phytochemistry*, 1970, 9, 1065. ⁴ P. R. Jefferies, J. R. Knox, and T. Ratajczak, *Tetrahedron Letters*, 1970, 3229.

[1-3H2,1-14C]Geraniol was fed, as its pyrophosphate, to Gibberella fujikuroi and the metabolites were isolated. The ³H:¹⁴C ratios are tabulated. The gibbane aldehyde was then oxidized to gibberellin A_{12} monomethyl ester with the

loss of one tritium atom (3H:14C, 4.9:1). The remaining label has already been located in gibberellic acid.² Consequently, we suggest that the ring contraction occurs by oxidation at C-7 and a hydride shift from C-6 to C-7 as the C-7,C-8 bond migrates. Further confirmatory studies utilizing kauranoid and gibbane derivatives are in hand. The formation of both 6α - and 6β - alcohols may therefore represent divergent pathways.4

(Received, December 29th, 1970; Com. 2237.)