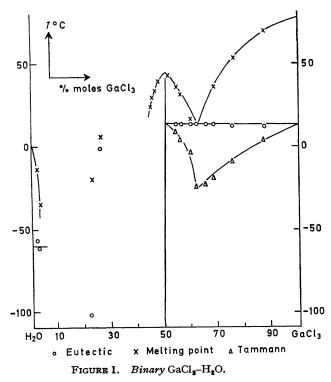
Chemical Communications

(The Journal of the Chemical Society, Section D)

NUMBER 5/1971

10 MARCH


Crystallized Hydrates in GaX₃-H₂O Binaries and their Vibrational Spectra

By M. T. Bories, J. Rozière, and A. Potier*

[Laboratoire des Acides Minéraux, Associé au CNRS (No. 79) Faculté des Sciences, Place Eugène Bataillon, 34-Montpellier, France]

Summary Systematic studies of liquid-solid equilibria in the binaries GaX_3-H_2O (X=Cl, Br) show the existence of several hydrates the vibrational (i.r. and Raman) spectra of which indicate a change in the co-ordination around gallium.

DIAGRAMS for GaX_3 -H₂O binaries have been established by thermal analysis following crystallization treatments. In

100 7°C 100 % moles GaBr₃ 50 50 0 -50 -50 50 70 90 Hal GaBr₃ • Eutectic x Melting point ▲ Tammann FIGURE 2. Binary GaBr_-H2O.

the binary GaCl₃-H₂O, only the monohydrate GaCl₃,H₂O

has been characterized. It is a compound with a congruent

melting point. Solutions in the range 0-50% (moles GaCl₃) form glasses and are difficult to crystallize, and

hence the diagram in this range (Figure 1) is very ill defined.

The binary $GaBr_3-H_2O$ shows five definite hydrates at 1,2,3,4, and 15 H_2O . They have congruent melting points, except for the trihydrate. The hexahydrate has not been characterized but its occurrence is not rejected.

A study of the i.r. $(200-4000 \text{ cm}^{-1})$ and Raman $(0-500 \text{ cm}^{-1})$ spectra of the adducts GaCl₃, H₂O and GaBr₃ with

1,2,4, and 15 H₂O gives indications concerning the environment of the gallium. For the two monohydrates and the dihydrate of GaBr₃, i.r. and Raman spectra are characteristic of a H_2O-GaX_3 arrangement with four-co-ordination

I.r. spectra in the fundamental vibration range of the water molecule show the presence of two types of water molecule for the dihydrate and the pentadecahydrate. Some are co-ordinated on the gallium, others outside the

TABLE. Assignments of the O-GaX₃(C_{3v}) "skeleton" in GaCl₃,H₂O, GaBr₃,H₂O, and (GaBr₃,H₂O)H₂O

$GaCl_{a}H_{a}O$			$GaBr_3, H_2O$			$(GaBr_3, H_2O)H_2O$	
I.r.	Raman	Assignments	I.r.	Raman	Assignments	I.r.	Raman
			440 - 410		v(Ga–O)	470 - 430	
410	418 \	ν (Ga-O) + ν _{deg.} (GaCl ₃)	305	310 \	$v_{deg.}(GaBr_3)$	∫ 310	316
390	404 ∫	$V(Ga=O) + Vdeg.(GaOl_3)$	295	290 f		295	300
360	364	$v_{s}(GaCl_{s})$	225	230^{-1}	vs(GaBr ₃)	230	233
	169	δ(GaCla)		120	$\delta(GaBr_3)$		120
	128						

 v_{s} symmetric stretching vibration of the pyramidal group GaX₃. v_{deg} . degenerate stretching vibration of the pyramidal group GaX₃. δ bending vibration of the pyramidal group GaX₃.

around the gallium. For the dihydrate, they show that its formula must certainly be (GaBr₃,H₂O)H₂O (Table).

For the other hydrates studied, i.r. and Raman spectra may be interpreted on the basis of six-co-ordination around gallium.

"skeleton." The existence of particularly short hydrogen bonds might be characterized by the triplet found around 2900-2600-1900 cm⁻¹ in the i.r. spectra of the dihydrate and tetrahydrate.

(Received, November 5th, 1970; Com. 1921.)