Phosphorus σ - π Spin Polarization Parameters

By C. THOMSON* and D. KILCAST

(Department of Chemistry, University of St. Andrews, St. Andrews, Fife)

Summary Experimental values of the σ - π spin polarisation parameters for phosphorus have been determined from a comparison of calculated spin densities and observed hyperfine coupling constants in several free radicals and ions containing phosphorus.

ALTHOUGH much work has been performed on estimating $\sigma - \pi$ polarization ('Q') parameters for magnetic nuclei such as ¹³C, ¹⁴N, ¹⁹F etc. by comparison of experimental spin densities with calculated spin densities, lack of experimental data and useful theoretical calculations on phosphorus radicals have precluded estimation of the ³¹P parameters. We have prepared the anions and cations of several heterocyclics containing phosphorus and in conjunction with theoretical calculations have estimated the Qparameters for phosphorus in these compounds.

and Pb(OAc)₄/dimethoxyethane oxidation]; all six were stable at room temperature. The anions of two phospholes [1-methyl-2,5-diphenylphosphole (D) and 1,2,5triphenylphosphole (E)] were prepared² by Na/dimethoxyethane reduction at -60° . Comparison of the carbon $2p_z$ spin densities obtained from the experimental spectra of the phosphorin anions and cations with those calculated by the McLachlan method showed excellent agreement; the agreement in the phosphole anions was not quite as good.

Use of the one-parameter equation

$$A_{\rm P}^{\rm exp} = |Q_{\rm eff}^{\rm P}|\rho_{\rm P}^{\rm calc}$$
(1)

gave the values of $Q_{\text{eff}}^{\mathbf{P}}$ in Table 1, where the average values are also given.

Although the errors in the calculated ρ_P values may be

TABLE 1							
System		$A_{\rm P}^{\rm exp}$	$ ho_{ m P}^{ m calc}$	$ Q_{eff}^{\mathbf{P}} $	$ Q_{\text{eff}}^{\mathbf{P}} _{\mathbf{av}}$		
Phosphorin cations	(A) (B) (C)	26·7 24·1 24·2	0·329 0·228 0·227	81·1 105·9 106·6	97.9		
Phosphorin anions	(A) (B) (C)	26·9 30·4 32·9	1.067 0.779 1.063	25·2 39·0 30·9	31.7		
Phosphole anions	(D) (E)	23·5 26·5	-0.035 - 0.034	671·4 779·4	725-4		
† Values in gauss.							

The anions and cations of three phosphorins [2,4,6-tri-tbutylphosphorin (A), 2,6-di-t-butyl-4-phenylphosphorin (B), and 2,4,6-triphenylphosphorin (C)] were prepared by the method of Dimroth et al.¹ [K/dimethoxyethane reduction rather large, the results do suggest that the average value of $Q_{\text{eff}}^{\text{P+}}$ is significantly higher than $Q_{\text{eff}}^{\text{P-}}$, which indicates a possible excess charge effect. The data of Cowley and Hnoosh⁵ on a series of phosphine anions confirm that the high value obtained for $Q_{\text{eff}}^{P^-}$ for the phosphole anions is probably in error, presumably because of the very low negative values calculated for ρ_{P} . Using the data of ref. 3 and equation 1 with Hückel spin densities gives $|Q_{eff}^{P-}| =$ 28.2G, in good agreement with the value obtained for the phosphorin anions.

It was not possible to find evidence for an excess charge effect using a two-parameter equation.

$$A_{\rm P}^{\rm exp} = Q_{\rm PP}^{\rm P} \ \rho_{\rm P}^{\rm calc} + Q_{\rm CP}^{\rm P} \ \rho_{\rm C}^{\rm calc} \tag{2}$$

because of near-dependence of the equations. Solution of the equations for each phosphorin, giving "mean" values between the anion and cation, results in

 $|Q_{PP}^{P}| = 39$ G, $|Q_{CP}^{P}| = 28.6$ G (same sign),

indicating a substantial adjacent atom effect.

Spin densities have also been calculated² by the CNDO method for the π -radicals PH₂, PF₂, and PCl₂, and $Q_{\text{eff}}^{\text{P}}$ values obtained for these neutral radicals (Table 2).

(Owing to the low adjacent atom π spin densities, these are, in effect, Q_{PP}^{P} values). The values are consistent, and comparison with the corresponding values for the phosphorins indicates a substantial charge effect.

TABLE 2						
Radical	$\dagger A_{\mathbf{P}}$	ρp	$Q_{\text{eff}}^{\mathbf{P}}$			
PH ₂ PF ₂ PCl ₂	+80.0 +84.6	1.0 0.937	+80.0 +90.2			
r Cl ₂	+70.0	0.718	+97.5			

† Values in Gauss.

We thank Professor K. Dimroth and Dr. E. W. Brave for gifts of the phosphorins and phospholes. D. K. thanks the Carnegie Trust for a Research Studentship.

(Received, November 30th, 1970; Com. 2069.)

¹ K. Dimroth, N. Greif, H. Perst, and F. W. Steuber, Angew. Chem. Internat. Edn., 1967, 6, 85; K. Dimroth and F. W. Steuber, ibid., p. 445; K. Dimroth, N. Greif, W. Städe, and F. W. Steuber, *ibid.*, p. 711.
² C. Thomson and D. Kilcast, to be published.
³ A. H. Cowley and M. H. Hnoosh, *J. Amer. Chem. Soc.*, 1966, 88, 2595.