
## Ditertiary Phosphine Rhodium and Iridium Complexes Containing the Molecular Unit $S_2$ or $Se_2$ as a Ligand

By A. P. GINSBERG\* and W. E. LINDSELL

(Bell Laboratories, Murray Hill, New Jersey 07794)

Summary Cyclo-octasulphur and cyclo-octaselenium react with  $[Ir(dppe)_2]Cl$  and  $[Rh(dmpe)_2]Cl$  (dppe =  $Ph_2P$ - $CH_2 \cdot CH_2 \cdot PPh_2$  and dmpe =  $Me_2P \cdot CH_2 \cdot CH_2 \cdot PMe_2$ ) to form the complexes  $[Ir(S_2)(dppe)_2]Cl$  (1),  $[Ir(Se_2)(dppe)_2]$ -Cl (2), and  $[Rh(S_2)(dmpe)_2]Cl$  (3).

THE iridium and rhodium oxygen complexes  $[Ir(O_2)-(dppe)_2]^+$  (dppe = Ph<sub>2</sub>P·CH<sub>2</sub>·CH<sub>2</sub>·PPh<sub>2</sub>),  $IrX(O_2)CO[PPh_3]_2$  (X = Cl, or I), and  $[Rh(O_2)(dppe)_2]^+$  have  $O_2$  molecules linked to the metal atom in the " $\pi$ -bonding" manner.<sup>1-3</sup> We report analogous S<sub>2</sub> and Se<sub>2</sub> complexes (1), (2), and (3). Unlike O<sub>2</sub>, the free S<sub>2</sub> and Se<sub>2</sub> molecules do not exist at room temperature; in the complexes they are stabilized by co-ordination to the metal atom. Transition-metal complexes with nonbridging molecular Se<sub>2</sub> were previously unknown. The recently reported<sup>4</sup> niobium complexes  $(\pi$ -C<sub>5</sub>H<sub>5</sub>)<sub>2</sub>Nb(S<sub>2</sub>)X (X = Cl, Br, I, or SCN), the O<sub>2</sub> analogues of which are not known, contain a nonbridging S<sub>2</sub> molecule; shown by X-ray methods<sup>5</sup> to be attached to the metal atom in the " $\pi$ -bonding" manner with an S–S distance of 1·73 Å in the chloride (*cf.*, d<sub>S-S</sub> = 1·92 Å in the free S<sub>2</sub> molecule<sup>6</sup>.



Properties of the new  $S_2$  and  $Se_2$  complexes are listed in the Table. The compounds were formed by treating the appropriate iridium and rhodium bis-diphosphine complexes with cyclo-octasulphur or cyclo-octaselenium as indicated in reactions (1), (2), and (3). The reactions were carried out under  $N_2$  in dry, degassed solvents. Treatment of (3) with aqueous  $NH_4PF_6$  precipitated (4).

$$[Ir(dppe)_2]Cl + S_8 \xrightarrow[C_eH_e-CH_eCl_a]{(1)} (1)$$

$$[Ir(dppe)_2]Cl + Se_8 \xrightarrow{20^\circ, 3 \text{ days}} (2)$$
 (2)

$$[Rh(dmpe)_2]Cl + S_8 \xrightarrow{25^\circ, 16 h.}_{C_8H_8-THF} (3) \qquad (3)$$

Complexes (1), (2), and (4) appear to be unchanged on exposure to air in the solid state, but (3) is hygroscopic. Compound (1) was recovered unchanged from a methylene chloride solution through which  $O_2$  had been passed for 12 h. Conductivity measurements in acetonitrile show the complexes to be monomeric 1:1 electrolytes, and we suggest that they have the structure A similar to that found by X-ray analysis<sup>1</sup> for the  $O_2$  complexes [Ir( $O_2$ )-(dppe)<sub>2</sub>]PF<sub>6</sub> and [Rh( $O_2$ )(dppe)<sub>2</sub>]PF<sub>6</sub>.

<sup>31</sup>P N.m.r. spectra of (1) and (2) (Table) show two sets of nonequivalent phosphorus atoms consistent with structure A or with structure B in which the S or Se atoms are placed between the metal and two of the phosphorus atoms. However,  $J_{P-P}$  for (1) and (2) are larger than  $J_{P-P}$  for the oxygen complex  $[Ir(O_2)(dppe)_2]Cl (cf., footnote e of the$ Table), and this excludes structure B, which would be $expected to have a smaller <math>J_{P-P}$  than A. The i.r. spectrum (CsI disk) of (1) also favours A. In the region 540—630 cm<sup>-1</sup>, where v(P=S) for a complex of type B would be expected, there is only a very weak band at  $615 \text{ cm}^{-1}$  due to the (dppe) ligand.

so cannot be simple Y-Y stretching frequencies. A comparison of the 525 and 310  $\rm cm^{-1}$  bands with  $\nu (\rm S-S)$  and

|             |                                                  |    |    | Conductivity in CH <sub>3</sub> CN <sup>o</sup> |                      |             |                   |          |                                                                                |
|-------------|--------------------------------------------------|----|----|-------------------------------------------------|----------------------|-------------|-------------------|----------|--------------------------------------------------------------------------------|
|             |                                                  |    |    | - · ·                                           |                      |             |                   | A theory |                                                                                |
|             | Formula                                          |    |    | Colour                                          | М.р.° С <sup>ь</sup> | $\Lambda_0$ | Α                 | 1:1      | <sup>31</sup> P n.m.r.d,e                                                      |
| (1)         | $[Ir(S_2)(dppe)_2]Cl$                            | •• | •• | Orange                                          | 218-221              | 139         | 380               | 333      | t, $\delta = -23.8$ ; t, $\delta = -20.4$ ;<br>$I = 7.2 \text{ Hz}^{\text{f}}$ |
| <b>(2</b> ) | $[Ir(Se_2)(dppe)_2]Cl$                           | •• | •• | Green                                           | 200-201              | 125         | 329               | 322      | $J = -16.5; t, \delta = -14.9;$<br>I = 6.7  Hzg                                |
| (3)<br>(4)  | $[Rh(S_2)(dmpe)_2]Cl$<br>$[Rh(S_2)(dmpe)_2]PF_6$ | •• | •• | Orange<br>Orange                                | 154-155<br>174-175   | Not<br>160  | t measured<br>365 | 349      | Not measured<br>Not measured                                                   |

TABLE S<sub>2</sub> and Se<sub>2</sub> complexes with iridium and rhodium<sup>a</sup>

<sup>a</sup> All compounds listed have satisfactory C, H, P, Cl, S, or Se analyses. <sup>b</sup> Uncorrected, in evacuated capillaries. <sup>c</sup> Measurements were made over the concentration range  $10^{-2}$ — $10^{-4}$ M at 25 °C. <sup>d</sup> In CH<sub>2</sub>Cl<sub>2</sub> solution with <sup>1</sup>H decoupling. Shifts are in p.p.m. with reference to H<sub>2</sub>PO<sub>4</sub>; t stands for triplet. <sup>e</sup> For comparison, in CH<sub>2</sub>Cl<sub>2</sub> solution, [Ir(O<sub>2</sub>)(dppe)<sub>2</sub>]Cl shows t,  $\delta = -20^{\cdot4}$ ; t,  $\delta = -13^{\cdot2}$ ; J=4.5 Hz. Measured at  $-60^{\circ}$  with a PEt<sub>3</sub> reference and converted into H<sub>3</sub>PO<sub>4</sub> reference using  $\delta$ (PEt<sub>3</sub>)=+20.4 p.p.m. <sup>g</sup> Measured at ambient temperature with  $H_{3}PO_{4}$  reference.

The identifiable nonphosphine ligand frequencies of compounds (1)—(4) are of interest. A band at 525 cm<sup>-1</sup> (m, i.r.) in the  $S_2$  complexes (3) and (4) and at  $310 \text{ cm}^{-1}$ (vw, i.r.; s, Raman) in the Se<sub>2</sub> complex (2), are the highest frequencies observed that may be associated with, respectively, the S<sub>2</sub> and Se<sub>2</sub> groups. These bands presumably arise from a vibration of the same type as the  $540 \text{ cm}^{-1}$ band in  $(\pi$ -C<sub>5</sub>H<sub>5</sub>)<sub>2</sub>Nb(S<sub>2</sub>)X (X = Cl, Br, I, or SCN) assigned as v(S-S),<sup>4</sup> and the 858-862 cm<sup>-1</sup> band in IrX(O<sub>2</sub>)(CO)- $(PPh_3)_2$  (X = Cl, or I) assigned as  $\nu(O-O)$ .<sup>7</sup> Both the latter are insensitive to the Y-Y (Y = O, or S) distance and v(Se-Se) in the free S<sub>2</sub> and Se<sub>2</sub> molecules does not indicate the S-S or Se-Se bond order in compounds (1)-(4). Whether the S-S distance in  $[Ir(S_2)(dppe)_2]Cl$  changes like the O-O distance in  $[Ir(O_2)(dppe)_2]Cl$  or the S-S distance in  $(\pi - C_5 H_5)_2 Nb(S_2) Cl$ , *i.e.* whether it expands or contracts relative to the free S<sub>2</sub> molecule, is being studied in an X-ray structure determination.8

We thank the DuPont Company Central Research Laboratory and JEOLCO (Tokyo) for measuring the <sup>31</sup>P n.m.r. spectra.

(Received, January 6th, 1971; Com. 020.)

- <sup>1</sup> J. A. McGinnety, N. C. Payne, and J. A. Ibers, J. Amer. Chem. Soc., 1969, 91, 6301.
- <sup>2</sup> R. Mason, Nature, 1968, 217, 543.
- <sup>1</sup> J. A. McGinnety, R. J. Doedens, and J. A. Ibers, Science, 1967, 155, 709; Inorg. Chem., 1967, 6, 2243.
  <sup>4</sup> P. M. Treichel and G. P. Weber, J. Amer. Chem. Soc., 1968, 90, 1753.
- <sup>5</sup> L. F. Dahl, personal communication and cited in ref. 4.
- <sup>6</sup> L. R. Maxwell, V. M. Mosley, and S. B. Hendricks, Phys. Rev., 1936, 50, 41.
- <sup>7</sup> See, e.g. P. B. Chock and J. Halpern, J. Amer. Chem. Soc., 1966, 88, 3511.
- <sup>8</sup> J. A. Ibers, personal communication.