Tetrakis(dithiocarboxylato)vanadium(IV)

By O. PIOVESANA and C. FURLANI*

(Institute of General and Inorganic Chemistry, University of Perugia, 06100 Perugia, Italy)

Summary The reaction of vanadyl salts with dithiocarboxylates $RCS_2^- = L$ results in cleavage of the V-O vanadyl bond and yields stable compounds of stoicheiometry VL_4 containing chelated RCS_2 - ligands, with a probable eight-co-ordinate vanadium atom.

Few examples of VIV complexes with sulphur-containing ligands are known and the factors determining the stoicheiometry and stereochemistry of these complexes appear not to be fully understood. Thus the $R_2NCS_2^-$ ion can form either "normal" $VO(R_2NCS_2)_2^1$ or eight co-ordinate V- $(R_2NCS_2)_4^2$ complexes, depending on the reagents and

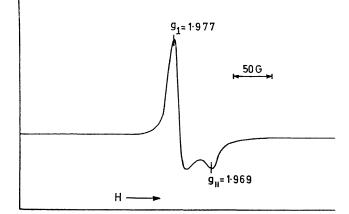


FIGURE. E.s.r. room temperature powder spectrum of V(CH₃CSS)₄

solvents. Anionic vanadyl bis-1,2-dithiolenes have been characterised³ while S₂P(OEt)₂⁻ reduces VO²⁺ to V^{III}.⁴ No other system of this type has been characterised.

The behaviour of some dithiocarboxylates RCS₂-, [R = Ph (dtb), Me C_6H_4 (dtt), Me (dta), and PhCH₂ (dtpa)] as ligands toward VO²⁺ has been investigated.

The peculiarity of these ligands is that they are able to destroy the vanadyl V-O bond present in vanadyl sulphate or chloride, in solvents such as water or ethanol, to give stable, oxygen-free compounds for which complete elemental analyses indicate the stoicheiometry $V(RCS_2)_4$. Magnetic measurements confirmed that the central metal ion had an oxidation state of +4. The magnetic moments were almost temperature independent and in the expected range

 $(1.7-1.8 \mu_B)$ for a $3d_1$ system. The e.s.r. spectra are also typical of VIV (vide infra).

Various stereochemistries are possible for $V(RCS_2)_4$, depending on the number of sulphur atoms bonded to the metal and on the nature of the bonding. Bridging behaviour by the CS_2^- group is ruled out by molecular weight measurements in C_6H_6 and CH_2Cl_2 solutions, which indicate a monomeric composition, so the co-ordination number is determined by the mono- or bi-dentate nature of the $CS_2^$ group. I.r. spectra were used to decide whether or not the negative charge was localised on one of the two sulphur atoms in a CS_2^- group, as $\nu(CS_2)$ stretching modes for localised cases are expected at different wavelengths from that of the delocalised case. The simplest case is that of $V(dta)_4$. In the free acid, the symmetric and antisymmetric stretching frequencies of the CS₂ group fall at 581 and 1216 cm⁻¹, respectively.⁵ On complex formation these bands disappear and are replaced by three new bands, one at 860 cm^{-1} and a doublet at 1150 and 1175 cm^{-1} . This is consistent with a delocalised negative charge, *i.e.* chelation. No "mixed" behaviour is apparent so all four ligands in V(dta)₄ are equivalent.

In V(dtb)₄, two bands can be assigned as mainly v_s and v_{as} , at 1015 and 1260 cm⁻¹, respectively, so again the four ligands are equivalent and the frequency values are consistent with chelation. These views are supported by comparison with the spectra of square planar Ni^{II} complexes with the same ligands, in which chelation was established by spectroscopic⁶ and X-ray methods.⁷ $V(dtpa)_4$ and $V(dtt)_4$ behave substantially in the same way.

Thus, in so far as i.r. spectra are sensitive to the effects above, a co-ordination number of eight can be assumed for the $V(RCS_2)_4$ complexes.

A preliminary e.s.r. investigation has been undertaken for these complexes. Their solution spectra in CH_2Cl_2 or C_6H_6 exhibit the typical eight line-hyperfine splitting (51V, I = 7/2). Room-temperature powder spectra for V(dta)₄ and $V(dtt)_4$ show axially symmetric anisotropy: $g_{\perp} =$ 1.977, $g_{||} = 1.969$ and $g_{\perp} = 1.981$, $g_{||} = 1.966$ respectively.

The choice of the eight-co-ordinate polyhedron for VIV can be restricted, for different reasons, to that between two idealized structures: the square antiprismatic (D_{4d} symmetry) and the dodecahedral $(D_{2d} \text{ symmetry}).^8$ Since in D_{4d} symmetry the lowest-lying metal orbital is d_{z^2} and in D_{2d} symmetry $d_{(x^2-y^2)}$, at least in the case of V(dta)₄ and $V(dtt)_4$ the e.s.r. spectra clearly indicate a D_{2d} symmetry.

(Received, November 23rd, 1970; Com. 2016.)

¹ B. J. McCormick, Inorg. Chem., 1968, 7, 1965; G. Vigee and J. Selbin, J. Inorg. Nuclear Chem., 1969, 31, 3187. ² D. C. Bradley and M. H. Gitlitz, J. Chem. Soc. (A), 1969, 1152; E. C. Alyea and D. C. Bradley, *ibid.*, 2330; D. C. Bradley, R. H. Moss, and K. D. Sales, Chem. Comm., 1969, 1255; M. Colapietro, A. Vaciago, D. C. Bradley, M. B. Hursthouse, and I. F. Rendall, ıbıd., 1970, 743.

- ⁴ C. Furlani, P. Porta, A. Sgamellotti, and A. A. G. Tomlinson, Chem. Comm., 1969, 1047.

- ⁶ R. Mecke and H. Spiesecke, *Chem. Ber.*, 1956, **89**, 1110.
 ⁶ C. Furlani and M. L. Luciani, *Inorg. Chem.*, 1968, **7**, 1586.
 ⁷ M. Bonamico, G. Dessy, and V. Fares, *Chem. Comm.*, 1969, 324.
 ⁸ J. L. Hoard and J. V. Silverton, *Inorg. Chem.*, 1963, **2**, 235.

³ I. A. McCleverty, J. Locke, B. Ratcliff, and E. J. Wharton, Inorg. Chim. Acta, 1969, 283; N. M. Atherton, J. Locke, and J. A. McCleverty, Chem. and Ind., 1965, 1300.