Dichloro(tetramethylthiourea)selenium(II): Stabilization of the SeCl₂ Molecule via Co-ordination

By KENNETH J. WYNNE* and PHILIP S. PEARSON (Department of Chemistry, University of Georgia, Athens, Georgia 30601)

Summary The stabilization of the SeCl₂ molecule as the tetramethylthiourea complex SeCl₂(tmtu) is reported.

FROM vapour density,^{1a,b} electron diffraction,² and Raman spectroscopic³ studies it is known that SeCl₄ is completely dissociated into SeCl₂ and Cl₂ in the gas phase from 200— 600°. The only known chemistry of SeCl₂ is the disproportionation to Se₂Cl₂ and SeCl₄ in the liquid or solid states, and the reaction with Cl₂ to give SeCl₄¹

We have recently reported the preparation of methyltrihalogeno(tetramethylthiourea)tellurium(IV) complexes⁴ from the reaction of MeTeCl₃ and MeTeBr₃ with tetramethylthiourea (tmtu). In extending our studies we found that the reaction of methylselenium trichloride with tmtu gave the unexpected complex SeCl₂(tmtu).

MeSeCl₃ reacted with tmtu to give, after work-up, a yellow solid. Recrystallization (CHCl₃) gave bright yellow moisture-sensitive crystals, m.p. 137–139°. Analytical results were consistent with the formula SeCl₂(tmtu). An average molecular weight of 255 was determined cryoscopically in PhNO₂ compared with the formula weight of 282.

From these results it was apparent that a redox reaction had occurred between tmtu and $MeSeCl_3$ presumably according to equation (1).

$$MeSeCl_3 + tmtu \rightarrow SeCl_2(tmtu) + MeCl \qquad .. (1)$$

This was supported by a ¹H n.m.r. spectrum of the reaction solution which showed the presence of MeCl. In contrast to MeTeCl₃(tmtu) which is stable for days in CH_2Cl_2 solution, our results are consistent only with the transient existence of the corresponding Se^{IV} complex. Some precedence for the reduction of a Se^{IV} species in the presence of a thiourea is found in the reported reduction of selenium-(IV) in concentrated acid solution by thiourea to a suggested bis(thiourea)selenium(II) species, but no compound was isolated.⁵

The methyl groups in tmtu are equivalent in the n.m.r. spectrum with peaks at $\delta 3.02$ p.p.m. in both PhNO₂ and CHCl₃ (vs. Me₄Si). For tmtu in SeCl₂(tmtu) a downfield shift to $\delta 3.29$ in CHCl₃ and $\delta 3.46$ p.p.m. in PhNO₂ was observed as predicted by simple inductive effects and consistent with our molecular weight data which indicated that the equilibrium (2)

$$\operatorname{SeCl}_2(\operatorname{tmtu}) \rightleftharpoons \operatorname{SeCl}_2 + \operatorname{tmtu} \dots (2)$$

lay far to the left. In addition, our n.m.r. results were important in establishing that no measureable decomposition of SeCl₂(tmtu) occurred in PhNO₂ during the cryoscopic molecular weight determinations. However, it was found that decomposition was appreciable after *ca*. 4 h as evidenced by the appearance of a peak at $\delta 3.5$ p.p.m. which we assigned to the (tmtu)₂²⁺ ion.^{6,7} Addition of tmtu to SeCl₂(tmtu) in CHCl₃ gave rise to one sharp peak of intermediate chemical shift indicating rapid exchange between unco-ordinated and co-ordinated tmtu. It was also noted that the presence of excess tmtu caused rapid decomposition of the complex.

I.r. spectra o	f SeCl ₂ (tmtu) a	and tmtu ²
SeCl. (tmtu)		tmtu
CHCl ₃ solution	Nujol mull	Nujol mull 45 m 95 m
	128 sh, m	
	138 m	
160 sh, w	170 w	
204 m	210 s	200 w
233 w		
248 w	252 m-s	
273 w	270 sh, m	280 m
	325 sh, w	320 m
375 w	375 w	400 m
		490 m-s
^a From 33-500	cm ⁻¹ .	

The i.r. data (Table) suggest that no gross structural changes occur in going from solution to the solid state. Although neither our i.r. nor other data provide direct information concerning molecular structure, the T-shaped molecule (Figure) seems a reasonable structural model for SeCl₂(tmtu) in solution and the solid state. This structure is analogous to that found for TeCl₂(tmtu),⁶ and is also in accord with the disposition of the five electron pairs around selenium.⁸ Our i.r. data are at least consistent with this view as it seems reasonable to assign the peaks at

 252 cm^{-1} in the solid, and $233 \text{ and } 248 \text{ cm}^{-1}$ in solution to axial Se-Cl frequencies. These are close to the values observed for symmetric and assymmetric Se-Cl stretches in Me₂SeCl₂ (244 and 280 cm⁻¹)⁹[†] which has a linear SeCl₂ group and contains an Se atom formally isoelectronic with that in SeCl₂(tmtu). A shift in the antisymmetric N-C-N stretching region from 1535 in tmtu to 1585 cm⁻¹ in SeCl₂ (tmtu) is consistent with donor bonding through sulphur.¹²

FIGURE

The Figure implies sp^3d hybridization of Se, but we prefer a bonding picture utilizing mainly p-orbitals on selenium. We favour a bonding scheme consisting of twocentre two-electron S-Se and three-centre four-electron¹³ Cl-Se-Cl bonds.

Our "trapping" of the SeCl₂ molecule suggests it may be an important intermediate in the decomposition of alkylselenium trihalides. The Lewis base stabilization of SeCl₂ is reminiscent of the stabilization of the S₂O molecule in $S_2O \cdot (NMe_3)$.¹⁴

The author thanks the National Science Foundation for support and Canadian Copper Refiners Ltd. for a gift of selenium through the Selenium-Tellurium Development Association.

(Received, November 10th, 1970; Com. 1946.)

† Note values for SeCl₂ symmetric and asymmetric stretching frequencies previously reported (ref. 10) are incorrect, probably because the spectrometer was not purged with dry air. The 270 cm^{-1} peak may therefore have been caused by strong water absorptions at 275-82 cm⁻¹, giving rise to a spurious doublet.

- ¹ (a) J. H. Simon, J. Amer. Chem. Soc., 1930, 52, 3483; (b) D. M. Yost and E. C. Kircher, *ibid.*, p. 4680.
 ² P. A. Akishim, V. P. Spiridinova, and R. A. Mishulina, Vestnik. moskov. Univ., Ser. II, Khim., 1961, No. 2, 23.
 ³ G. A. Ozin and A. Vander Voet, Chem. Comm., 1970, 896.
 ⁴ K. J. Wynne and P. S. Pearson, Chem. Comm., 1970, 556.
 ⁵ E. N. Ovsepyan, G. N. Shaposhnikova, and N. G. Galfayan, Zhur. neorg. Khim., 1967, 12, 2411.
 ⁶ O. Free and W. Lebengaran, Adv. Chem. Scim. 102014,

- ⁶ O. Foss and W. Johannessen, Acta Chem. Scand., 1961, 15, 1940.
 ⁷ H. Lecher, F. Grof, C. Heuck, K. Koberle, F. Euadinger, and F. Heydweiller, Annalen, 1925, 445, 35.
 ⁸ R. J. Gillespie, Canad. J. Chem., 1961, 39, 318.

- ⁹ K. J. Wynne, unpublished results.
 ¹⁰ K. J. Wynne and J. W. George, J. Amer. Chem. Soc., 1965, 87, 4750.
 ¹¹ A. W. Cordes, Symposium on Stereochemistry of Inorganic Compounds, Banff, Alberta, Canada, 1968.
 ¹² T. J. Lane, J. V. Quagliano, J. A. Ryan, and S. Mizuishima, J. Amer. Chem. Soc., 1959, 81, 3824.
- ¹³ R. E. Rundle, *Rec. Chem. Progr.*, 1962, 23, 195.
 ¹⁴ P. W. Schenk and W. Steudel, *Angew. Chem. Internat. Edn.*, 1965, 4, 402.