Use of ¹³C in Biosynthetic Studies. Location of Isotope from Labelled Acetate and Formate in the Fungal Tropolone, Sepedonin, by ¹³C Nuclear Magnetic **Resonance Spectroscopy**

By A. G. McInnes, D. G. Smith, and L. C. Vining*

(Atlantic Regional Laboratory, National Research Council of Canada, Halifax, Nova Scotia, Canada)

and LEROY JOHNSON

(Analytical Instrument Division, Varian Associates, Palo Alto, California)

Summary The ¹⁸C labelling patterns in sepedonin (3,6,9trihydroxy - 3 - methyl - 1,3,4,7 - tetrahydrocyclohepta[c] pyran-7-one) isolated from cultures of Sepedonium chrysospermum fed [1-13C]acetate, [2-13C]acetate, and [13C]formate have been elucidated by 13C nuclear magnetic resonance (13C n.m.r.) spectroscopy.

In biosynthetic ¹³C tracer studies labelling patterns can be obtained directly by ¹³C n.m.r. spectroscopy or indirectly by detection and integration of ¹³C-H satellite signals. The latter method has been applied in this laboratory^{1a,b} and by other workers² to a number of biosynthetic problems, and its advantages and limitations have been enumerated.18 However, it was only during the preparation of this manuscript that the first application of ¹⁸C n.m.r. in elucidating a biosynthetic pathway was reported.³

We have previously shown that sepedonin, produced by cultures of Sepedonium chrysospermum, has the structure 3,6,9-trihydroxy-3-methyl-1,3,4,7-tetrahydrocyclohepta[c]pyran-7-one,⁴ and have established,^{1b} by the ¹³C-H satellite

FIGURE. ¹³C n.m.r. spectra of sepedonin: sample (A) from ¹³CH₃CO₃Na, 142 mg; (B) from CH₃¹³CO₃Na, 80 mg; and (C) from H¹³CO₃Na, 85 mg. ¹³C enrichments were approximately 4, 5, and 20 times natural abundance in A, B, and C, respectively.^{1b} Solvent, 1.0 ml pyridine; 8 mm tube. Spectra recorded on HA-100 spectrometer (25-15 MHz) equipped with V-3530 RF/AF sweep unit, a Spectro-System 100 for multiscan averaging and V-3512-1 heteronuclear noise decoupler. Each spectrum is a composite of three equal sections of 50 b b m. backmark with 50 b b m. at 50 b b equal sections of 50 p.p.m., proton noise decoupled with 50 scans of 50 p.p.m. at 50 s/scan, lock signal β -carbons of pyridine. Chemical shifts measured relative to β -carbons of pyridine and converted into p.p.m. from Me₄Si (δ_e) using δ_e (β -carbons of pyridine) 123.9 p.p.m. $PYR-C_{\alpha},-C_{\beta}$, and -Cy refer to carbon resonances of pyridine.

of the eleven carbon positions in sepedonin. We now show that more conclusive biosynthetic information can be obtained by analysing the same labelled samples of sepedonin by ¹³C n.m.r.

The proton noise decoupled ¹³C n.m.r. spectra of sepedonin labelled by ¹³CH₃CO₂H (A), CH₃¹³CO₂H (B), and H¹³CO₂H (C) are shown in the Figure. As expected sepedonin gave eleven carbon resonances (singlets), and the following could be assigned unambiguously;⁶ δ_c 29.0 (CH₃), 44.0 (>CH₂, C-4), 60.6 (- CH_2O -, C-1), 93.6 (>C(OH)O-, C-3), 161.6 and 166.0 (=COH, C-6 and C-9), and 174.3 (>C=O, C-7). The signal at δ_c 113.5 could also be assigned to C-8 because only it has an intensity greater than expected for ¹³C natural abundance in spectrum C, and our ¹³C-H satellite results had previously established that position 8 in sepedonin was labelled by H¹³CO₂H. Assignment of C-5 (only carbon other than C-8 bearing one hydrogen) to the signal at δ_c 115.6 was based on CW (single frequency) decoupling experiments. Finally, the signal at δ_c 128.4 was assigned to C-9a, and the one at δ_c 140.6 to C-4a.

The relative intensities of the ¹³C resonances establish that position 8 in sepedonin is not labelled by either of the two acetate precursors (spectra A and B) whereas this position is specifically labelled by [13C]formate (spectrum C). Moreover, of the ten remaining carbon positions in sepedonin only five were enriched by ¹³CH₃CO₂H (spectrum A) and the other five by CH₃¹³CO₂H (spectrum B). The absence of vicinal ¹³C-1³C coupling together with the latter

observations proves that each acetate precursor has labelled alternate carbon atoms of a ten-carbon polyketide intermediate. The five carbons enriched by ¹³CH₃CO₂H were CH_3 , C-4, C-5, C-9a (δ_c 128.4), and C-7, whereas those labelled by $CH_3^{13}CO_2H$ were C-1, C-3, C-4a (δ_c 140.6), C-6, and C-9. These results provide convincing evidence that sepedonin is formed by insertion of the formate carbon atom between the third and fourth carbon atoms of a ten-carbon polyketide chain derived from acetate (see Scheme), and thus confirm the conclusions based on our more limited ¹³C-H satellite study.^{1b}

Nuclear Overhauser effects, producing enhancements of up to 2.98,7 preclude quantitative estimation of ¹³C enrichments by peak area integration of spectra A, B, and C. To obtain quantitative data it would have been necessary first to obtain the enhancements at individual carbon positions by comparing the signal intensities in decoupled and undecoupled ¹³C natural abundance spectra. This was not done in the present study because there was no ambiguity as to which positions were enriched by the three precursors. However, the Nuclear Overhauser enhancement factors for the C-5 and C-8 resonances might be expected to be very similar; when we integrated these signals in spectrum A we obtained a C-5:C-8 intensity ratio of 3.9:1 which was identical to the ratio obtained by the ¹³C-H satellite method.

(Received, December 1st, 1970; Com. 2083.)

¹ (a) D. Desaty, A. G. McInnes, D. G. Smith, and L. C. Vining, *Canad. J. Biochem.*, 1968, **46**, 1293; (b) J. Wright, D. G. Smith, A. G. McInnes, L. C. Vining, and D. W. S. Westlake, *ibid.*, 1969, **47**, 945.

⁸ M. Tanabe and G. Detre, J. Amer. Chem. Soc., 1966, 88, 4515; M. Tanabe and H. Seto, Biochim. Biophys. Acta, 1970, 208,

151; A. K. Bose, K. S. Khanchandani, P. T. Funke, and M. Anchel, Chem. Comm., 1969, 1347.

⁸ M. Tanabe, H. Seto, and L. Johnson, J. A. Muer, Chem. Soc., 1970, 92, 2157.
 ⁴ J. Wright, A. G. McInnes, D. G. Smith, and L. C. Vining, Canad. J. Chem., 1970, 48, 2702.
 ⁵ R. Bentley, J. Biol. Chem., 1963, 238, 1895; I. G. Andrew and W. Segal, J. Chem. Soc., 1964, 607; J. H. Richards and L. D,

Ferretti, Biochem, Biochys, Res. Comm., 1960, 201, 1960, 2107.
⁶ J. B. Stothers, Quart. Rev., 1965, 19, 144; J. W. Emsley, J. Feeney, and L. H. Sutcliffe, "High Resolution Nuclear Magnetic Resonance Spectroscopy," Pergamon Press, Oxford, 1965, vol. 2, p. 988; E. F. Mooney and P. H. Winson, Ann. Rev. N. M. R. Spectroscopy, 1969, 2, 156.
⁷ A. J. Jones, D. M. Grant, and K. F. Kuhlmann, J. Amer. Chem. Soc., 1969, 91, 5013.