Dynamic Nuclear Magnetic Resonance Evidence for Acetyl Exchange between peri-Oxygens of the Naphthazarin System

By I. C. Calder,* D. W. Cameron, and $\boldsymbol{M}_{\boldsymbol{\bullet}}$ D. Sidell

(Department of Organic Chemistry, University of Melbourne, Parkville, Victoria 3052, Australia)

Summary Variable-temperature n.m.r. studies of naphthazarin mono- and di-acetates have shown the occurrence of rapid intramolecular acetyl exchange.

TAUTOMERISM in naphthazarin (I) between various forms (Ia—c) is too rapid to be observed by n.m.r.¹ at room temperature. On the other hand, the spectrum of naphthazarin diacetate (II) is consistent with a single tautomer

(IIa).² However, recent work on the chemistry of C-substituted derivatives of this diacetate indicates that intramolecular acetyl shifts e.g. (IIa \rightleftharpoons c) can occur under remarkably mild conditions.³ We present n.m.r. evidence for rapid shifts of this kind in naphthazarin diacetate (II) and monoacetate (III) and have calculated relevant thermodynamic parameters.

The mono- and di-acetates² were prepared directly from

sublimed naphthazarin, the former being obtained in ca. 90% yield by selective acetylation with acetic anhydride

The 100 MHz n.m.r. spectrum of naphthazarin diacetat (II) in $C_6D_5NO_2$ showed signals from the acetate protons at δ 2·24 the quinonoid protons at δ 6·56 and the aromatic protons at δ 7·28. On heating, the signals from the ring protons began to broaden at 170° and significant broadening was observed at 200°.

OR² O OR² O OR²

OR¹ O OR¹

(a) (b) (c)

(I)
$$R^1 = R^2 = H$$

(II) $R^1 = R^2 = Ac$

(III) $R^1 = R^2 = Ac$

The spectrum of the monoacetate (III) in $C_6D_5NO_2$ showed signals from the acetate protons at $\delta 2.38$, the hydroxyl at $\delta 12.34$, the quinonoid protons at δ 6.67 and 6.70 (AB quartet; J 10.0 Hz) and the aromatic protons at δ 7.10 and 7.20 (AB quartet; J 8.5 Hz). Broadening was observed at 120° and almost complete coalescence at 190°C (Figure, a). For both compounds the acetate signals remained sharp throughout the temperature ranges studied.

The exchange broadened spectra were calculated using the DNMR programme of Binsch⁴ and those corresponding to the spectra in the Figure (a) are shown in (b). The thermodynamic parameters are listed in the Table.

Table			
	E_{ullet}	$\log A$	ΔG ‡
Compound	kcal mole-1		kcal mole⁻¹
(ÎI)	21.8	$12 \cdot 3$	$22 \cdot 3$
(III)	22.8	11.5	24.5

While spectra could not be obtained corresponding to the limiting fast-exchange situation, the results are consistent with intramolecular exchange of acetyl groups between peri-oxygen atoms. Intermolecular acetyl transfer takes place, but is slow compared to the intramolecular process and only becomes appreciable at temperatures above 180°. The intermolecular process results in an equilibrium mixture of naphthazarin and the mono- and di-acetates. However, at 170° this equilibrium takes at least 8 h to be attained.

The calculated spectra are for the exchanges (IIa \rightleftharpoons 11c) and (IIIa \rightleftharpoons IIIc), with no allowance for a contribution from (IIb) or (IIIb). The close similarity between observed and calculated spectra indicates that the lifetime of any 1,5-quinone intermediate must be very small. The similarity of the two activation energies suggests that the rate-determining step is the transfer of a single acetyl group, transfer of the second group, acetyl or proton, following rapidly As far **a**s we are aware this is the first

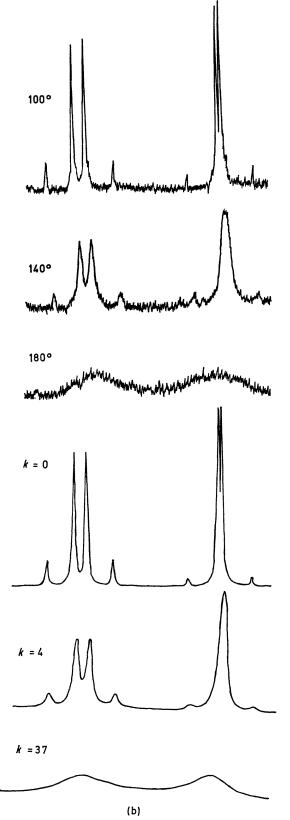


FIGURE. 100 MHz spectra of naphthazarin monoacetate (II); (a) observed, (b) calculated.

reported rapid transfer of acetyl groups on the n.m.r. timescale and further work is being carried out on related systems.

We are indebted to the Australian Research Grants Committee for a Research Fellowship (to M.D.S.).

(Received, December 29th, 1970; Com. 2255.)

- ¹ R. E. Moore and P. J. Scheuer, J. Org. Chem., 1966, 31, 3272.

 ² L. A. Cort and P. A. B. Rodriguez, J. Chem. Soc. (C), 1967, 949.

 ³ S. Alvarado, F. Farina, and J. L. Martin, Tetrahedron Letters, 1970, 3377; H. Brockmann and A. Zeek, Chem. Ber., 1968, 101, 4221; R. G. Cooke and J. B. Robinson, personal communication.

 4 G. Binsch, J. Amer. Chem. Soc., 1969, 91, 1304. The programme was obtained from the Quantum Chemistry Program Exchange.