Bismuth(I) in the Solid State. The Crystal Structure of $(Bi^+)(Bi_9^{5+})(HfCl_6^{2-})_3$

By ROBERT MARK FRIEDMAN and JOHN D. CORBETT*

(Department of Chemistry and Institute for Atomic Research, Iowa State University, Ames, Iowa 50010)

Summary The Bi⁺ ion has been stabilized in the solid state in the compound $(Bi^+)(Bi_9^{5+})(HfCl_6^{2-})_3$.

RECENT studies^{1,2} have shown earlier reports of monovalent bismuth compounds to be fallacious in that known compounds all contain homonuclear polyatomic cations of bismuth. The Bi⁺ ion has been characterized only in dilute solutions of bismuth in its molten halides^{3,4} or in dilute solution in NaCl-AlCl₃, KCl-ZnCl₂, and NaBr-AlBr₃

FIGURE. The Bi⁺ ion and its environment in $(Bi^+)(Bi_9^{5+})(HfCl_6^{2-})_3$ (Dotted lines between shaded chlorine atoms delineate the triangular arrangements described in the text.)

solvents.⁵ We have prepared a compound with the stoicheiometry $\operatorname{Bi}_{10}\operatorname{Hf}_3\operatorname{Cl}_{18}$ for which the X-ray crystallographic structure determination reveals the ionic formulation (Bi⁺)(Bi₉⁵⁺)(HfCl₆²⁻)₃. This is the first unambiguous identification of Bi⁺ ions in the solid state.

Black needles of $Bi_{10}Hf_3Cl_{18}$ were prepared by the reduction *in situ* of a 3:2 mixture of hafnium tetrachloride and bismuth trichloride with elemental bismuth. Crystals

were mounted under argon. Weissenberg and precession photographs showed the crystals to be hexagonal, a =13.890(1) c = 10.692(2) Å, Laue class 6/m. Extinction conditions were consistent with space groups $P6_3/m$ (C_{6h}^2 ; No. 176) and $P6_3$ (C_6^6 ; No. 173); $D_m = 6.05 \pm 0.2$ g cm⁻³; $D_c = 6.07$ g cm⁻³ for Z = 2. Three-dimensional peak height intensity data were collected on an automated Hilger-Watts diffractometer using Zr-filtered Mo- K_{α} radiation ($\theta < 25^{\circ}$). The net peak height intensities for 1122 reflections were converted into integrated intensities⁶ and then corrected for absorption, Lorentz, and polarization effects.

Analysis of the three-dimensional Patterson function yielded trial positions for two sets of bismuth atoms which accounted for *ca.* 56% of the electron density in the unit cell. These positions were used to phase a difference Fourier synthesis which revealed the hafnium and chlorine positions. Full-matrix least-squares refinement with isotropic thermal parameters for 839 observed reflections $(>3\sigma_{\rm F})$ converged to a conventional *R* value of 0.20. A Fourier difference map showed electron density along the *Z*-axis at *z ca.* 0.1 and at the symmetry-related positions *z ca.* 0.4, 0.6 and 0.9. These positions are too close to each other to allow full occupancy, and two Bi⁺ cations have been shown to occupy this set of positions statistically.

The successful refinement of the trial structure in the centrosymmetric space group with 50% statistical occupancy of the axial bismuth position converged to $R_1 = 0.157$ and confirmed the model and the choice of space group. Refinement using anisotropic thermal parameters yielded values of 0.093 for R_1 and 0.107 for F_w . The largest residuals in the final difference map were $\pm 4 \text{ e/Å}^3$ in the region of the Bi₉⁵⁺ ion and $\pm 1 \text{ e/Å}^3$ in the region of the Bi₊ ion on a scale of 170 e/Å³ for a bismuth atom.

The structure consists of $HfCl_{6}^{2-}$, Bi_{9}^{5+} , and Bi^{+} ions. The anions are slightly distorted octahedra with an average Hf-Cl bond distance of 2.446(11) Å. The Bi_{9}^{5+} ion is a tricapped trigonal prism similar to that found in 'BiCl'¹ but far less distorted. The polyatomic cation has crystallographic C_{3h} symmetry. There are four Bi-Bi distances in the cation: 3.241(3) Å within the triangular face of the prism, 3.737(4) Å for the height of the prism, and 3.086(3) and 3.103(3) Å from the prism to the waist atoms, the difference in the latter being a measure of the deviation from full D_{3h} symmetry.

The Bi⁺ ions form a broken column along the z axis (Figure). Three chlorine nearest neighbours form a plane normal to the z-axis with its centre displaced 0.18 Å from the Bi⁺ ion [Cl(4A) about Bi(1) in the Figure]. The distance from the bismuth ion to these chlorine atoms is 3.188(12) Å, close to the sum of the estimated van der Waals radii, 3.2 Å.¹ There are six next nearest neighbours forming triangular units above and below the bismuth ion [Cl(4B) at 3.786(16) and Cl(2) at 3.593(19) Å from Bi(1)]. The latter pair of triangles are nearly equidistant from the unit formed by Cl(4A). The symmetry about the bismuth ion is exactly C_3 with only small deviations from D_{3h} as described; the co-ordination is best described as substantially trigonal since the Cl(4A)-Bi-Cl(4A) angles are

119.7°. The phase is properly diamagnetic and an insulator in bulk although uniaxial ionic conduction parallel to the z-axis might be expected.

This work was performed in the Ames Laboratory of the U.S. Atomic Energy Commission.

(Received, December 11th, 1970; Com. 2148.)

- ¹ A. Hershaft and J. D. Corbett, Inorg. Chem., 1963, 2, 979.
 ² J. D. Corbett, Inorg. Chem., 1968, 7, 198.
 ³ L. E. Topol, S. J. Yosim, and R. A. Osteryoung, J. Phys. Chem., 1961, 65, 1511.
 ⁴ C. R. Boston and G. P. Smith, J. Phys. Chem., 1962, 66, 1178; C. R. Boston, G. P. Smith, and L. C. Howick, *ibid.*, 1963, 67, 1849.
 ⁵ N. J. Bjerrum, C. R. Boston, and G. P. Smith, Inorg. Chem., 1967, 6, 1162; N. J. Bjerrum, H. L. Davis, and G. P. Smith, *ibid.*, 1967, 6, 1603.
 ⁶ L. E. Absender and C. S. Smith. Acta Cruct. 1969, 15, 982.

⁶ L. E. Alexander and G. S. Smith, Acta Cryst., 1962, 15, 983.