Yields and Decay Processes of the Solvated Electron in Liquid Alcohols at Low Temperature observed by Nanosecond Pulse Radiolysis

By J. H. BAXENDALE* and P. WARDMAN

(Chemistry Department, University of Manchester, Manchester M13 9PL)

Summary Observations on e_{a} in alcohols are used to show that *ca*. one third of the total electrons produced recombine before solvation, that in the reaction of e_{a} with alcohols neither diffusion nor dielectric relaxation are rate determining, and that the total yield of e_{a} in water may be as high as 5.

RADIOLYSIS of alcohols involves¹ reaction of solvated electrons (e_{\bullet}) which are *either* neutralised by geminate ions ($e_{\bullet,g}$):

$$\bar{\mathbf{e}_{s,g}} + \bar{\mathrm{ROH}}_2 \to \mathrm{ROH} + \mathrm{H}$$
 (1)

or escape the Coulombic field of \dot{ROH}_2 to become free ions $(e_{i,i})$ which react with the solvent:

$$e_{st} + ROH \to RO^- + H.$$
 (2)

 $G(\mathbf{e}_{\mathbf{s},\mathbf{t}})$ is readily determined¹ but much of reaction (1) occurs in < 10 ns at 293 K and $G(\mathbf{e}_{\mathbf{s},\mathbf{g}})$ has not been measured directly. At *ca.* 185 K these processes are considerably slower and we have observed changes in absorption which are due to the solvation process itself² followed by (1) and then by (2). Geminate recombination is now so slow (see Figure) that we can measure $G(\mathbf{e}_{\mathbf{s},\mathbf{g}})$ and $G(\mathbf{e}_{\mathbf{s},\mathbf{s}})$ directly.

Pure, deaerated alcohols were irradiated in a variable temperature flow system with 5—10 ns electron pulses from a 12 MeV linear accelerator, and optical absorptions of $e_{\overline{s}}$ were measured at λ_{\max}^3 on equipment with a rise time of ca. 1 ns. The Figure shows the initial decay of $e_{\overline{s}}$ in CH₃OH and n-C₄H₉OH at 187 K. The solvation process² is complete within 5 ns in CH₃OH and 20 ns in n-C₄H₉OH and is much faster than spur recombination of $e_{\overline{s}}$, e.g. in n-C₄H₉OH the first half-life of reaction (1) is ca. 4 μ s. The free ions show first-order decay with $t_{\underline{s}}$ ca. 1 ms at these temperatures (see below) and extrapolation to zero time gives $G(e_{\underline{s},\underline{s}})$. Table 1 shows these yields at 293 and ca. 185 K. must recombine as 'dry' electrons before solvation. Previous indirect estimates^{1,4} of $G(e_{s,g})$ must include these 'dry' electrons. In fact we have found there is no clear distinction between 'dry' and 'solvated' electrons, and

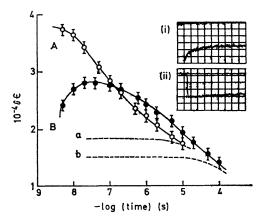


FIGURE. Initial absorptions of e_{\bullet} in alcohols at 187 K: (A), CH₂OH and (B), n-C₄H₂OH. Curves a and b show the contributions of $e_{\bullet,t}$ to the total absorption in each case. Insets: CRO traces of decay of absorption at 187 K in (i) CH₃OH, and (ii) n-C₄H₂OH, 100 ns/cm. The increase at short times in curve (B) is due to the solvation process.

'solvated' refers here to electrons which have achieved their equilibrium solvent atmosphere. A small fraction of electrons which have not reached this equilibrium state ('damp' electrons!) undergo much more rapid geminate recombination than do solvated electrons.²

Bronskill *et al.*⁵ found that the absorption (G_{ϵ}) of e_{a}^{-} at 293 K in (CH₃)₂CHOH is 25% that for H₂O at *ca.* 20 ps. We obtain a total $G_{\epsilon}(e_{a}^{-}) \geq 2\cdot6 \times 10^{4}$ in (CH₃)₂CHOH at *ca.* 10 ns which means that for H₂O at *ca.* 20 ps, $G_{\epsilon}(e_{a}^{-}) \geq 10\cdot4 \times 10^{4}$. For $e_{a,t}^{-}$ in H₂O, $G_{\epsilon} = 5\cdot1 \times 10^{4}$ and using the accepted $G(e_{a,t}^{-}) = 2\cdot6$ for H₂O, the total yield $G(e_{a}^{-})$ in H₂O at 293 K is *ca.* 5. This assumes the electron

TABLE 1.	Relative	vield s	of e	in	a lcohols
----------	----------	----------------	------	----	------------------

		At 2	93 K	At <i>ca.</i> 185 K ^a		
		$10^{-4}G\epsilon(\mathbf{e}_{s,t})^{\mathbf{b}}$	$G(\mathbf{e}_{\mathbf{s},\mathbf{g}})/G(\mathbf{e}_{\mathbf{s},\mathbf{g}})^c$	$10^{-4}G\epsilon(e_{s,t})^{b}$	$G(\mathbf{e}_{\mathbf{e}_{\mathbf{e}_{\mathbf{e}_{\mathbf{e}}}}})/G(\mathbf{e}_{\mathbf{e}_{\mathbf{e}_{\mathbf{e}}}})^{c}$	
CH,OH	 	1.79	≥ 0.24	1.83	1.06	
C,H,OH	 	1.52	≥ 0.23	1.31	1.04	
n-C,H,OH	 	1.31	≥ 0.71	1.51	0-90	
(CH ₃), CHOH	 	1-61	≥ 9-65	~ 1.6	∼1.1	

^a CH₃OH, 187 K; C₂H₅OH, 163 K; n-C₄H₂OH, 188 K; (CH₃)₂CHOH, 186 K.

^b Units: molecules $(100 \text{ eV})^{-1} \text{ m}^{-1} \text{ cm}^{-1}$. Error ca. $\pm 6\%$.

^e Error ca. $\pm 12\%$.

We find at *ca.* 185 K $G(e_{\bullet,g}) \simeq G(e_{\bullet,t})$, and $G(e_{\bullet,t}) \simeq 1.2 \pm 0.3^{1,4}$ so that the total yield of solvated electrons is 2.4 ± 0.6 . Since the total ionization yield $G(e^{-}) \simeq 4.2 - 4.6^{1,4}$ at least one third of all the electrons produced

is fully solvated in $(CH_3)_2$ CHOH at *ca*. 20 ps. The data for the other alcohols are also consistent with a higher $G(e_3^-)$ in H₂O than normally assumed, and recently a high value has been observed in alkaline ice.⁴

Analysis of spur decay kinetics in alcohols shows that at 293 K the observable fully solvated electrons decay approximately according to $[e_{\mathbf{e},\mathbf{g}}] = \text{constant} \times (\text{time})^{-\frac{1}{2}}$, as

first-order disappearance of end in alcohols. Our direct measurements of k_2 between ca. 185 and 330 K are closely described by the Arrhenius expression $k_2 = A_2 \exp(-E_2/RT)$

TABLE 2. Reactions of e. with alcohols^a

					$t_{\frac{1}{2}}(298 \text{K}) \ (\mu \text{s})$	$\log_{10}A_2$ (s ⁻¹) ^b	<i>E</i> ₂ (kJ) ^b	$E\eta(kJ)^{c}$	Eτ (kJ)ď
CH ₂ OH					7	8.70 ± 0.11	20.2 ± 0.5	11.9	15.5
C₂H₅OH		••	••		9	8.45 ± 0.05	20.3 ± 0.2	13.0	18.5
n-C ₄ H ₉ OH		••			8	8.84 ± 0.05	$22 \cdot 4 \pm 0 \cdot 3$	19.2	26.3
(CH ₃) ₂ CHO	H	••	••	••	22	$\textbf{7.60} \pm \textbf{0.14}$	17.5 ± 0.7	21.8	26.3

^a Containing 1 mM-Na alkoxide.

^b Errors are least-squares standard deviations from measurements at 12-15 temperatures.

^c Temperature exponent of viscosity.¹

^d Temperature exponent of dielectric relaxation time.¹

predicted from current models.⁴ At ca. 185 K only the last $\sim 60\%$ of $e_{s,g}$ decay according to this expression, the initial decay being slower than predicted. Indirect measurements of the temperature dependence of reaction (2) have been used¹ to suggest models for the homogeneous

with the parameters shown in Table 2. Comparison of E_2 with E_{η} and E_{τ} shows that diffusion of e_{\bullet} cannot be ratedetermining and that correlations1 with dielectric relaxation are probably fortuitous.

(Received, February 10th, 1971; Com. 126.)

¹ G. R. Freeman, in "Actions chimiques et biologiques des Radiations," ed. M. Haissinsky, Masson et Cie., Paris, 14° Série, 1969.
² J. H. Baxendale and P. Wardman, Nature, in the press.
³ S. Arai and M. C. Sauer, jun., J. Chem. Phys., 1966, 44, 2297.
⁴ S. J. Rzad and J. H. Fendler, J. Chem. Phys., 1970, 52, 5395.
⁵ M. J. Bronskill, R. K. Wolff, and J. W. Hunt, J. Chem. Phys., 1970, 53, 4201.
⁶ G. V. Buxton, F. C. R. Cattell, and F. S. Dainton, Chem. Comm., 1971, 23.