Photochemistry of Pyridine N-Oxides.¹ Chemical Properties of Single and **Triplet Excited States**

By FRANÇOIS BELLAMY, LUIS GUILLERMO RUIZ BARRAGAN, and JACQUES STREITH*

(Laboratoire de Photochimie Organique associé au C.N.R.S., Institut des Sciences Exactes et Appliquées du C.U.H.R., Rue des Frères Lumière, 68-Mulhouse, France)

Summary Sensitization of the pyridine N-oxide triplet state increases the extent of oxygen transfer reactions, whereas quenching with a copper salt in aqueous solution increases the extent of photorearrangement.

ULTRA-VIOLET irradiation of pyridine N-oxides leads to the formation of photoisomers and to photolytic oxygen abstraction,¹ these processes being competitive. It has been shown that pyridine N-oxide rearranges photochemically in poor yield to 2-formylpyrrole;² when benzene is the solvent, oxygen transfer is also observed to give phenol and pyridine.³ Buchardt has shown that photolytic oxygen abstraction is the only process when benzophenone is used as a sensitizer, photoisomerization being totally suppressed.3

We have found that 2-cyanopyridine N-oxide undergoes photoinduced oxygen transfer, cyanopyridine being formed in 47% yield.² Triplet sensitization of a 2×10^{-2} Msolution of 2-cyanopyridine N-oxide in methylene chloride increases the photolytic process (Table 1).

nitrate complex⁴ in H₂O was irradiated (Table 2). The formation of 2-formylpyrrole was monitored by measuring the optical density of the pyrrole u.v. absorption band $[\lambda_{max} 292 \text{ nm} (\epsilon 16.000)].$

In practice, a solution of pyridine N-oxide and the copper salt can be irradiated without prior synthesis of the complex. The shortest reaction time and best yield of 2-formylpyrrole was obtained with a 2×10^{-1} M-solution of $Cu(ClO_4)_2$. On a preparative scale, 320 mg of 2-formylpyrrole are formed from 1 g of pyridine N-oxide.

When pyridine N-oxide complexes of Zn²⁺, Fe³⁺, Ni³⁺, and Co²⁺ salts were irradiated under the same experimental conditions, no increase in 2-formylpyrrole formation could be detected. The effect of Cu^{II} salts cannot therefore be rationalized on grounds of a simple triplet quenching process by transition metal ions.

The mechanism of the effect of copper salts on pyridine N-oxide photochemistry is being investigated.

Financial support by the Instituto Nacional de la Investigación Científica (Mexico) and by the Délégation Générale

TABLE 1. Yield of 2-cyanopyridine in the presence or absence of sensitizers

Lamp	Sensitizer	Concentration of sensitizer	Yield (%)	Filter
Philips HPK 125	None		47.3	Pyrex
Philips HPK 125	Xanthone $E_{\rm T}$ 74 kcal mol ⁻¹	$egin{array}{llllllllllllllllllllllllllllllllllll$	57·6 63·0 71·0	Pyrex Pyrex Pyrex
Hanau NK 6/20	Tetrabutylammonium phenyltetrazolide† $E_{\mathbf{T}}$ 79 kcal mol ⁻¹	3×10^{-2} M	71.7	Quartz
Philips HPK 125	Oxygen bubbled through the solution		33.0	Pyrex

Experiments were conducted in a merry-go-round u.v. multitube reactor under nitrogen. Irradiation was continued until all starting material was consumed. Formation of 2-cyanopyridine was monitored by g.l.c., using 2,4-dimethylphenol as internal standard.[‡] When oxygen is bubbled through the solution, the yield of 2-cyanopyridine drops to 33%. These results suggest a triplet-state intermediate during the photolytic cleavage.

In view of the preceding results it seemed reasonable to postulate a singlet excited state to explain the formation of the photoisomers. Quenching of the triplet state of pyridine N-oxide should therefore lead to an increased yield of 2-formylpyrrole. A transition metal complex was thought to quench the triplet state but in fact formation of 2-formylpyrrole was increased tenfold when a copper

à la Recherche Scientifique et Technique (France) is gratefully acknowledged.

TABLE 2. Irradiation of pyridine N-oxide in H₂O in the presence of copper salts (Vycor filter)

Lamp Philips	Reactant Pyridine N-oxide 2×10 ⁻² м	Yield (%) 2	Duration (h) 100
HPK 125 Philips HPK 125	[PyO] ₂ Cu[NO ₃] ₂ 10 ⁻² M	32	100
Philips HPK 125	Pyridine N-oxide 2×10^{-2} M -+Cu[ClO ₄] ₂ 2×10^{-1} M	40	6

(Received, December 29th, 1970; Com. 2220.)

† We thank Professor Scheiner for a gift of this compound. P. Scheiner, Tetrahedron Letters, 1969, 4863.

10% Carbowax 20 M column on Chromosorb W 60/80.

C. Leibovici and J. Streith, in the press; J. Streith and P. Martz, Tetrahedron Letters, 1969, 4899.

² J. Streith and C. Sigwalt, Bull. Soc. chim. France, 1970, 1157. ^a (a) J. Streith, B. Danner and C. Sigwalt, Chem. Comm., 1967, 979; (b) A. Altkaitis and M. Calvin, ibid., 1968, 292; (c) P. L. Kumler and O. Buchardt, ibid., 1968, 1321; (d) M. Yamada and H. Arai, Chem. and Pharm. Bull. (Japan), 1968, 16, 767; Tetrahedron Large 2019. Letters, 1969, 2747; 1970, 2213.

⁴ J. V. Quagliano and F. Fujita, J. Amer. Chem. Soc., 1961, 83, 3770; R. L. Carlin, ibid., p. 3773.