Intermetallic Distances in Mercury(I) Halides Hg₂F₂, Hg₂Cl₂, and Hg₂Br₂

By EBBA DORM

(Institute of Inorganic and Physical Chemistry, University of Stockholm, Box 6801, S-113 86 Stockholm, Sweden)

Summary The structures of Hg_2F_2 , Hg_2Cl_2 , and Hg_2Br_2 have been reinvestigated on the basis of single crystal data; the intermetallic distances differ from those earlier reported and show no correlation with the electronegativity of the halogen.

Precipitated samples of the halides are microcrystalline. To prepare single crystals suitable for X-ray work such

samples of Hg_2F_2 and Hg_2Cl_2 were sealed in platinum capsules and subjected to a pressure of 2 kbars at elevated temperature. Hg₂F₂ crystallized at 300 °C. Hg₂Cl₂ crystallized at the same temperature when a minute amount of water was added. Crystals of Hg, Br, obtained through reduction of HgBr₂ with 2,2'-bisbenzimidazole were supplied by Professor Bengt Aurivillius at The Lund Institute of Technology. The shape and size of the crystals selected for X-ray work were such as to allow a rather high degree of accuracy to be reached in the absorption correction. Data for Hg₂F₂ were collected with a Pailred diffractometer using $Mo-K_{\alpha}$ radiation. Data for the other two compounds were obtained with an integrating Weissenberg camera using $Cu-K_{\alpha}$ radiation; the intensities were measured with a photometric Saab film scanner. Least squares refinements were carried out, with the assumption of anisotropically vibrating Hg atoms. No deviation from the previously assumed space group I4/mmm could be detected, but the resulting interatomic distances differ considerably from those given in earlier reports and

THE Hg-Hg distance in the mercury(I) halides has been reported to vary considerably from fluoride to iodide. It has been suggested that the variation in published distances: $2\cdot43 \text{ Å}^1 \text{ Hg}_2\text{Cl}_2 2\cdot53^2 \text{ or } 2\cdot45 \text{ Å},^3 \text{ Hg}_2\text{Br}_2 2\cdot58 \text{ or } 2\cdot50 \text{ Å},^3 \text{ Hg}_2\text{I}_2$ Hg₂F₂ 2·69 Å,² is related to the electronegativity of the ligand in the linear groups X-Hg-Hg-X existing in these compounds. All these structure determinations were based essentially on powder diffraction data. Since the accuracy of the inter-atomic distances thus determined must be low, single crystal refinements have been carried out to test the validity of this relationship.

only show small differences among themselves. The Table summarizes the results of the present investigation.

The Hg-Hg distance found in the fluoride is very close to

A single crystal investigation of Hg_2I_2 is in progress, also a refinement of Hg₂Br₂ structure on the basis of diffractometer data.

Compound						 D		
Cell dimensions						Hg_2F_2	Hg_2Cl_2	Hg_2Br_2
a∕Å	••	••	••	••	••	3.673 ± 1	$\textbf{4.482} \pm \textbf{2}$	4.663 ± 1
C/A	••	••	••	••	••	10.884 ± 2	10.910 ± 3	$11 \cdot 133 \pm 2$
Number of independent reflections used					••	202	56	48
Point position in space group I4/mmm							$+(0,0,z), +(\frac{1}{2},\frac{1}{2},\frac{1}{2}+z)$	
Parameters	(X = 1)	halide	•	/			<u> </u>	
z(Hg)	`	'				0.11518 ± 4	0.1158 ± 3	0.1118 + 5
$z(\mathbf{X})$	••					0.3120 + 10	0.338 + 4	0.355 + 1
Temp. factors								
$\hat{\beta}_{11}(Hg$;)	••	••		••	0.0309 ± 3	0.027 ± 3	0.034 ± 2
$\beta_{33}(Hg$	g)					0.00138 ± 3	0.0019 ± 5	0.0028 + 3
$B(\mathbf{X})/\mathbf{X}$	Ų	••	••		••	1.6 + 1	3.6 + 7	$2 \cdot 1 + 3$
Distances							and an	
Hg-Hg	g/Å					$2{\cdot}507 \pm 1$	2.526 ± 6	2.49 + 1
Two short	Hg-X/	Å				$2 \cdot 14 + 2$	2.43 + 4	2.71 + 2
Four longer	· Hੱg-X	/Å			••	2.715 ± 5	3.209 + 6	3.32 + 1
Root mean	square	deviat	ions for	r Hg				
r(a)/Å	·					0.145 ± 1	0.164 + 7	0.193 ± 4
r(c)/A						0.091 ± 2	0.107 ± 11	0.132 ± 6
R-Factor					••	0.036	0.080 \pm 11	0.065 ± 0
								0.000

TABLE

the corresponding distance found in several oxo-salts containing mercury doublets with oxygen ligands.4-9 There is no obvious trend in the Hg-Hg distances among the halides; the difference in bond length between Hg_2Br_2 and Hg_2F_2 is not significant. Thus, no correlation exists between the electronegativity of the ligand and the Hg-Hg bond length.

The author thanks Professor Arne Magnéli for his valuable comments on the manuscript.

This work was supported by the Swedish Natural Science Research Council.

(Received, December 21st, 1970; Com. 2205.)

¹ D. Grdenić and C. Djordjević, J. Chem. Soc., 1956, 1316.

- ² R. J. Havighurst, J. Amer. Chem. Soc., 1926, 48, 2113.
 ³ N. V. Belov and V. I. Mokeeva, Trudy Inst. Krist. Akad. Nauk S.S.S.R., 1949, 5, 13. C.A., 47, 3648i.
- ⁴ D. Grdenić, J. Chem. Soc., 1956, 1312.
- ⁵ G. Johansson, Acta Chem. Scand., 1966, 20, 553.
 ⁶ E. Dorm, Acta Chem. Scand., 1967, 21, 2834.

- ⁶ B. Lindh, Acta Chem. Scand., 1967, **21**, 2745.
 ⁸ R. C. Elder, I. Halpern, and J. S. Pond, J. Amer. Chem. Soc., 1967, **89**, 6877.
 ⁹ E. Dorm, Acta Chem. Scand., 1969, **23**, 1607.