By HERBERT C. BROWN* and YOSHINORI YAMAMOTO

(R. B. Wetherill Laboratory, Purdue University, Lafayette, Indiana 47907)

Summary α -Bromoethyldiethylborane undergoes rapid almost instantaneous, rearrangement at 25 °C to s-butyl ethylboron bromide under the influence of aluminium bromide and related electrophilic catalysts.

 α -BROMOETHYLDIETHYLBORANE (I) undergoes nucleophilic induced rearrangement to derivatives of s-butylethylborane, whose rearrangement must involve co-ordination of the nucleophile with the boron atom followed by the migration of an alkyl group from boron to carbon.¹

We report that treatment of (I) with an equivalent quantity of aluminium bromide in carbon disulphide at

 $25 \,^{\circ}$ C results in an almost instantaneous isomerization of (I) into s-butylethylboron bromide (II) (equation 1). The

was stirred for 10 min. The 1 H n.m.r. spectrum revealed complete isomerization to (II). Distillation gave 1.65 g (9.3 mmol) of pure (II).

The effectiveness of a number of Lewis acid catalysts was explored by adding a number of metal halides to (I) in carbon tetrachloride and following the change in the ¹H n.m.r. spectra with time. When the rearrangement was complete, the reaction mixture was treated with water, the organic layer was separated, and the product was isolated and identified as the 8-hydroxyquinolinate. In addition, the reaction mixture was oxidized with alkaline hydrogen peroxide and the products, butan-2-ol and ethanol, determined by g.l.c.

The data are summarized in the Table.

The results reveal that the catalysts listed in Group I are the most effective, causing almost instantaneous rearrangement. However, sulphuric acid gives a relatively low yield of product, presumably the result of side-reactions. Although aluminium isopropoxide, which shows only weak Lewis acidity, causes a rapid rearrangement, it is not possible to state at this time whether the activity of this reagent is a reflection of its electrophilic or nucleophilic

TABLE Rearrangement of α -bromoethyldiethylborane with various electrophiles^a

			•	
Electrophile	Half-life of rearrangement ^b (min)	Yield of s-butylethylborinic acid ^e (%)	Oxida Bu®OH	tion ^d EtOH
Group I	ζ, ,			
AlCl ₃ AlBr ₃ Al(OPr ¹) ₃ ZrCl ₄ ZnCl ₅	$\begin{array}{c} 05^{e} \\ 05^{e} \\ 05^{e} \\ 05^{e} \\ 05^{e} \\ 05^{e} \end{array}$	96 95 90 90 88	96 98 90 91 90	98 98 92 95 95
AgBF ₄ H ₂ SO ₄	0—5 ^e 0—5 ^e	95 58	98 60	99 72
Group II HgCl ₂ SnCl ₄ SbCl ₃ TiCl ₄	10 10 15 20	88 90 91 85	88 88 93¢ 92¢	93 92 93ª 95ª
AgF	180	89	85	90

^a Solutions of α -bromoethyldiethylborane (0.87 M) in carbon tetrachloride, except where otherwise indicated, were treated with an equimolar quantity of the electrophile at 25 °C. ^b Time of the disappearance of the ¹H n.m.r. signals at δ 4·13 and 1·73. ^c As the 8-hydroxyquinolinate, determined by ¹H n.m.r. ^d Determined by g.l.c., using diethyl ether as a solvent, except where otherwise indicated. ^e Very fast, almost instantaneous. ^f Carbon disulphide used as solvent. ^g Methylene chloride used as solvent.

rearrangement is readily followed by changes in the ${}^{1}\text{H}$ n.m.r. spectra. Rapid isomerization of (I) to (II) was also observed with a catalytic quantity of aluminium bromide (5 mole %).

The following procedure is representative. Aluminium bromide (0.13 g, 0.5 mmol) was dissolved in carbon disulphide (20 ml) and α -bromoethyldiethylborane (1.77 g, 10 mmol) was added to it at 25 °C. The resultant mixture character. The catalysts in Group II, which are generally less effective for Friedel-Crafts reactions,² are also less effective here. The reaction induced by silver fluoride is sluggish, possibly a consequence of its low solubility in the reaction mixture.

Previously it was reported that the bromination of triethylborane in the presence of nucleophilic reagents, such as water, involves predominantly a double migration.³

However, bromination in the presence of an electrophilic reagent, such as tin(IV) bromide, permits control of the reaction to achieve a single migration.

boron bromides, R¹R²BBr, and greatly enhances the possibilities of this versatile route to carbon structures via the bromination of organoboranes.

This development provides a simple new route to dialkyl-

(Received, November 5th, 1971; Com. 1922.)

- ¹ H. C. Brown and Y. Yamamoto, J. Amer. Chem. Soc., 1971, 93, 2796.
 ² G. A. Olah, "Friedel-Crafts and Related Reactions," vol. 1, Ed. G. A. Olah, Interscience, New York, 1963, ch. 4.
 ³ C. F. Lane and H. C. Brown, J. Amer. Chem. Soc., 1971, 93, 1025.