
The Synthesis of 1-(4-Hydroxy-3-methyl-cis-but-2-enyl)guanidine, the naturally occurring Hydroxygalegine

By N. J. LEONARD* and A. J. PLAYTIS

(School of Chemical Sciences, University of Illinois, Urbana, Illinois 61801)

Summary The synthesis of 1-(4-hydroxy-3-methyl-cis-but-2-enyl)guanidine in a stereoselective manner has confirmed the structure previously assigned to the hydroxygalegine found in *Galega officinalis*.

HydroxyGALEGINE has been isolated, along with galegine (I, base), from the seeds of *Galega officinalis* or common goatsrue,¹⁻³ and the structure has been assigned as 1-(4-hydroxy-3-methyl-*cis*-but-2-enyl)guanidine (III, base).¹⁻⁵ The gross structure was confirmed by the synthesis of the

dihydro-derivative,⁴ and *cis*-stereochemistry was inferred by non-identity with synthetic 1-(4-hydroxy-3-methyltrans-but-2-enyl)guanidine (II, base).⁵ With the develop-

† Satisfactory elemental analyses were obtained for all derivatives.

ment of a stereoselective synthesis of 4-hydroxy-3-methylcis-but-2-enylamine (IV),⁶ the desired precursor for 1-(4hydroxy-3-methyl-cis-but-2-enyl)guanidine has become available, and, accordingly, structural confirmation by synthesis of the natural hydroxygalegine could be realized.

$$\bigcup_{i=1}^{l} \bigcup_{i=1}^{l} \bigcup_{$$

The key to ensuring the stereochemistry of the precursor (IV) was in the utilization of cyclic intermediates, starting with a Diels-Alder reaction between isoprene and 1-chloro-1-nitrosocyclohexane,7 followed by basification and reduction of the 5-methyl-3,6-dihydro-1,2-oxazine formed with zinc and acetic acid. The crude 4-hydroxy-3-methyl-cisbut-2-envlamine (IV) was used directly in the reaction with S-methylisothiourea sulphate,8 and the product was converted into derivatives (III)† of 1-(4-hydroxy-3-methyl-cisbut-2-enyl)guanidine which could be compared with those described for the naturally occurring hydroxygalegine: picrate, $C_{12}H_{16}N_6O_8$, m.p. 149-151° (reported, 3 152°); flavianate, C₁₆H₁₉N₅O₉S, m.p. 166-167° (reported, 173-174°,² 173-176° after softening at 166°3); picrolonate, $C_{16}H_{21}N_7O_6$, m.p. 261-263° (dec.) [reported,³ 260-262° (dec.)].

Further identification of the synthetic product was achieved by comparison of the ¹H n.m.r. spectra (Table) of (III) picrate with synthetic (II) picrate, *i.e.*, relative

Comparative ¹H n.m.r.^a

Synthetic (III) picrate	Proton	Synthetic (II) picrate		
1.78 sb	a	1.63	S	
4·05 d / 56	ъλ	∫ 3.95	m	
3.88 d of d	c 🐧	<u>ໂ</u> 3∙75		
5·30 t /7	d	5.50	t	J 67
4.98 t J 56	OH	4.92	m	-
7·46 m	NH	7.50	m	
7·07 m	$(NH_2)_2$	7.05	m	

^a Chemical shifts, δ, from (CH₃)₄Si in (CD₃)₂SO. ^b Multiplicity.

¹ K. Pufahl and K. Schreiber, Experientia, 1961, 17, 302.

² N. V. Thoai and G. Desvages, Bull. Soc. chim. biol., 1963, 45, 413.

³ K. Schreiber, K. Pufahl, and H. Bräuniger, Annalen, 1964, 671, 147.
⁴ K. Schreiber, K. Pufahl, and H. Bräuniger, Annalen, 1964, 671, 154.

⁶ M. Olomucki, G. Desvages, N. V. Thoai, and J. Roche, *Compt. rend.*, 1965, 260, 4519.
⁶ N. J. Leonard, A. J. Playtis, F. Skoog, and R. Y. Schmitz, J. Amer. Chem. Soc., 1971, 93, 3056.
⁷ O. Wichterle and J. Novak, Coll. Czech. Chem. Comm., 1950, 15, 309.

⁸ B. Rathke, Ber., 1881, 14, 1774.

⁹ A. J. Playtis and N. J. Leonard, Biochem. Biophys. Res. Comm., 1971, 45, 1; E. J. Corey, H. A. Kirst, and J. A. Katzenellenbogen, J. Amer. Chem. Soc., 1970, 92, 6314; J. A. Katzenellenbogen, Ph.D. Thesis, Harvard University, 1969, p. 126ff.

synthetic (II) chloride. We thank Eli Lilly and Company for a fellowship held by one of us (A.J.P.).

(Received, November 11th, 1971; Com. 1952.)

J.C.S. Снем. Сомм., 1972