A Mild Retro- $[\pi 4_s + \pi 2_s]$ Cleavage Route to Furans and Fulvenes

By W. S. WILSON and R. N. WARRENER*

(Department of Chemistry, Australian National University, Canberra, A.C.T. 2600, Australia)

Summary A new route to β -substituted furans and fulvenes has been developed which is based on the ready thermal fragmentation of 4,5-diazatricyclo[6,2,1,0^{2,5}]-undeca-3,5,9-trienes.

RETRO- $[\pi 4_8 + \pi 2_8]$ (Diels-Alder) reactions are commonly used in synthesis.¹ These reactions are conducted under thermal conditions and extreme temperatures are often required to effect fragmentation.¹ This is one limitation where temperature sensitive products are the goal,² although this has been partly offset by flash vacuum pyrolysis techniques. This latter technique is elegantly demonstrated by the recent report by de Mayo and his co-workers on the synthesis of pentalene.³ We⁴ and others⁵ have observed that derivatives of the tricyclo[6,2,1,0^{2,5}]undeca-3,5,9-triene system (1) are particularly labile in respect to retro- $[\pi 4_{\rm S} + \pi 2_{\rm S}]$ cleavage, especially when the $\pi 2_{\rm S}$ component becomes part of an aromatic system. We have now developed a scheme for the synthesis of β -substituted furans and fulvenes which is based on the fragmentation of the 4,5-diaza-analogue of (1). The features of this scheme are: (i) simple formation of the diaza-intermediate, (ii) low temperatures involved, especially in the fragmentation step, (iii) essentially quantitative conversions in each step.

In order to evaluate the stability of the 4,5-diazatricyclo- $[6,2,1,0^{2,5}]$ undeca-3,5,9-triene system, the 3,6-di-(2'-pyridyl) derivative (3) was prepared from the reaction of equimolar

the literature.^{2,6} The standard method involves the following steps: (a) Formation of bicyclic adduct, (5)-(7); (b) Selective hydrogenation to the dihydro-derivative (11)—(13); (c) High temperature pyrolysis $(195-400^{\circ})$ to the 5-membered product (8)—(10) plus ethylene.

Reaction of the 7-substituted norbornadienes (5)-(7) readily occurred with the s-tetrazine (2) under mild con-

TABLE

Summary of conditions for conversion of 7-substituted norbornadienes into furans and fulvenes

Substituents		Dihydro-	Starting	Reaction		¹ H n.m.r. (δ p.p.m.) ^a
x	Y	compound	material	conditions	Product	of product
CF ₈	0	(11)	(5)	room temp., CDCl ₃ few h	(8) ^b	7.90 (s, vinylic)
CO₂Me	C=CPh ₂	(12)	(6)	room temp., CDCl ₃ , overnight	(9)°	7·357·65 (m, phenyl) 6·97 (s, vinylic) 3·85 (s, OMe)
CO ₂ Me	$C = CMe_2$	(13)	(7)	50°, CDCl ₃ , 2 h	(10) ^d	7·16 (s, vinylic) 3·83 (s. OMe) 2·31 (s, Me)

^a 60 MHz, CDCl₃, MeSi as internal standard. ^b Low boiling liquid, isolated by g.l.p.c. (carbowax 20m, fluoroport, 58°) (*m/e* 204). ^c M.p. 166°, reported² 165—167°, isolated by preparative layer chromatography (silica, CHCl₃) (*m/e* 350). ^d Unstable low-melting solid, isolated by short path distillation $(m/e \ 222)$.

amounts of 3,6-di-(2'-pyridyl)-s-tetrazine and norbornadiene in $CDCl_{a}$ at -20° . A rapid reaction occurred and nitrogen was eliminated to yield (3) in quantitative yield [¹H n.m.r., δ 1·19, 1·28 (2H, AB q, J 9 Hz, 11-H₂), 3·40 (2H, m, 1-, 8-H), 3.54 (2H, s, 2-, 7-H), 6.50 (2H, t, 9-, 10-H), 7.3-8.90 p.p.m. (8H, complex m, pyridyl)]. The lack of coupling between C-2(7) and C-1(8) supported the suggested stereochemistry, and is consistent with the s-tetrazine approaching from the less hindered exo-side. Intermediate (3) was stable below -10° , but above this temperature fragmentation to 3,6-di-(2'-pyridyl)pyridazine (4) and cyclopentadiene occurred.

In order to compare our method with the standard retro- $[\pi 4_8 + \pi 2_8]$ route used in synthesis of fulvenes² and furans,⁶ we have chosen three reactions already reported in

ditions (see Table) to produce the corresponding 5-membered products (8)-(10) plus the pyridazine (4). ¹H N.m.r. spectroscopy showed that the conversions were quantitative, although the isolated yields were only in the range 70-90%. The spectral properties of the products were in agreement with the assigned structures (see Table). Dimethyl 6,6-dimethylfulvene-2,3-dicarboxylate was only moderately stable, and this would account for the lack of success reported by Alder and Trimborn² using the standard retro- $[\pi 4_s + \pi 2_s]$ route in attempts to prepare this product.

The generality of this method is demonstrated by the synthesis of isobenzofuran,⁷ isobenzofulvenes,^{8a} and isoindoles.8b

(Received, 9th November 1971; Com. 1944.)

- ¹ H. Kwart and K. King, Chem. Rev., 1968, 68, 415.
 ² K. Alder and W. Trimborn, Annalen, 1950, 566, 58.
 ³ R. Bloch, R. A. Marty, and D. de Mayo, J. Amer. Chem. Soc., 1971, 93, 3071.
 ⁴ W. S. Wilson and R. N. Warrener, Tetrahedron Letters, 1970, 5203.
 ⁵ (A) B. Marchineth A. B. Barreneth, Chem. Letters, 1970, 5203.
- ⁵ (a) R. McCullough, A. R. Rye, and D. Wege, Tetrahedron Letters, 1969, 5231; (b) K. MacKenzie and W. P. Lay, Tetrahedron Letters, 1970, 3241; (c) W. P. Lay and K. Mackenzie, Chem. Comm., 1970, 398.
 ⁶ C. D. Weis, J. Org. Chem., 1962, 27, 3693.
 ⁷ R. N. Warrener, J. Amer. Chem. Soc., 1971, 93, 2346.

 - ⁸ Unpublished results: (a) P. L. Watson and R. N. Warrener; (b) G. M. Priestley and R. N. Warrener.