Catalysis in Ester Hydrolysis by a Cationic Detergent Containing an Imidazole Group at the Polar Head

By W. **TAGAKI,* M. CHIGIRA, T. AMADA,** and **Y. YANO** *(Department of Chemistry, Gunma University, Kiryu Gunma, Japan)*

Summayy **4-(Dimethylstearyl)methylimidazolylammon**ium chloride (I) was found to be an effective catalyst in the hydrolysis of p -nitrophenyl acetate.

MICELLAR catalysis by detergents as a model for enzymatic catalysis has drawn considerable interest in recent years,¹ *e.g.* the catalysis by a mixed micellar system of a **1: 1** complex of myristoyl histidine and cetyltrimethylammonium bromide of the hydrolysis of p -nitrophenyl esters.² **A** characteristic feature of this catalyst is that it gives a faster rate of acylation of imidazole nitrogen than a catalyst containing N-acetylhistidine. However, deacylation **is** so slow that the catalyst is no longer effective in the presence of an excess of substrate.

 $A = (I)$ $B = (\Pi) * (\Pi)$ $C = (I) + (I\underline{V})$

We report that deacylation is accelerated when the imidazole group is a part of the polar head groups of a cationic detergent. Systems **A-C** have been examined for the hydrolysis of p -nitrophenyl acetate (PNPA). Compound (I) was prepared by treating 4-chloromethylimida-

FIGURE. *Formation and the decomposition of acylimidazole intermediate in the hydrolysis of p-nitrophenyl acetate* **(PNPA)** *with phosphate buffer* 0.05 *M*, [PNPA] 1.58×10^{-4} *M* [Imidazole] 5×10^{-3} M and at 25⁵. pH *values for the systems are:* A-1, A-2, A-3 = 9, 8, 7; B(III/II = 10) = 8; Im-1, Im-2 = 8, 7.

t **B: (III/II** = **5)** ; for other conditions, see Figure **1.**

zole with dimethylstearylamine in benzene, to yield an amorphous powder which melts at **65"** forming liquid crystals which decompose at **178"** ; elemental analysis and the n.m.r. spectrum (D_2O) confirmed the structure. It is stable during the hydrolysis although it was decomposed by a hot alkaline solution. The critical micellar concentration of (I) under the kinetic conditions (Figure) was **1.9** \times 10⁻⁵ M.³

The formation of p -nitrophenol was initially rapid, then slow, with system B^2 (with an excess of substrate^{3,4}), whereas with system **A** the same pseudo first-order rate constant was observed throughout the whole reaction period. The initial rate was *ca.* **3** times slower for **A** than for B at pH **7.** However, when the pH was raised to **8,** an eightfold increase of the rate was observed for **A** while only a **1.2** fold increase was observed for B. The pH-rate profile for the initial reaction was a sigmoid curve for **B,3** while for **A** the reaction was first-order with respect to [OH⁻]. Representative rate data with $[Im] = 5 \times 10^{-4}$ M $[PNPA] = I \times 10^{-4}$ M, at 25° are as follows: $k_{obs} \times 10^{3}$ s⁻¹; imidazole, **0.25** (pH **8). A, 1.10** (pH **7),** *8-8* (PH **8);** B, **3.00** (PH **7), 3-70** (PH **8);**

Micellar surf ace

The Figure shows the formation of an acylimidazole intermediate $(\lambda_{\text{max}} 245 \text{ nm})^{5,6}$ in each of the hydrolyses catalysed by **A,** B, and imidazole. The catalysis by **A** has a special feature in that both the formation and the decomposition of acylimidazole intermediate are accelerated by increasing pH. Presumably the positive charge on the micellar surface of **A** causes the ionization of neutral imidazole to a more nucleophilic imidazole anion, and hydroxide ion concentrated near the positive charge causes a rapid deacylation [as in **(A')].** Supporting evidence is the loss of catalytic activity of (I) in system **C** where charge neutralization may take place. **A** high hydroxide ion concentration is also expected on a positive micellar surface of B, but not at the active site because of the charge neutralization between the anionic carboxyl and the positive ammonium groups.

(Received, 6th December **1971;** *Corn. 2087.)*

- **1** E. H. Cordes and **R.** B. Dunlap, *Accounts Chem. Res.,* **1969,** *2,* **329.**
- **2** C. Gitler and **A.** Ochoa-Solano, *J. Amer. Chem. SOC.,* **1968, 90, 8004.**
- *⁸*Determined by a dye method using eosine as the complexing agent, **M.** L. Corrin and W. D. Harkins, *J. Amer. Chem. SOL,* **1947, 69, 679.**
- **4** (a) T. Spencer and J. M. Sturtevant, *J. Amer. Chem. Soc.,* **1959,81, 1874;** (b) T. C. Bruice and S. **J.** Benkovic, "Bioorganic Mechan-*⁶***W.** P. Jencks, "Catalysis in Chemistry and Enzymology", McGraw-Hill, New York, **1969,** ch. **2.** ism," Benjamin, New **York, 1966,** vol. **1,** p. **215.**
	-
	- M. L. Bender and V. **W,** Turnquest, *J. Amer. Chem. Soc.,* **1957,79, 1656.**