Tetrachlorostibonium(v) Undecafluorodiantimonate(v); Its Crystal Structure and Action as an Aromatic Chlorinating Agent

By HARRY B. MILLER,* H. WALLACE BAIRD, CHRISTOPHER L. BRAMLETT, and WILLIAM K. TEMPLETON (Department of Chemistry, Wake Forest University, Winston-Salem, North Carolina 27109)

Summary Preliminary X-ray structure analysis shows tetrachlorostibonium(v) undecafluorodiantimonate(v), an excellent aromatic chlorinating agent, to be $SbCl_4 + Sb_2 - F_{11}$.

THE chlorofluorides of pentavalent antimony were first studied by Ruff who, from phase studies, adduced the existence of several compounds having the generic formula $xSbCl_5, ySbF_5.^1$ Among others $(SbF_5)_3SbCl_5$ and $(SbF_5)_2-SbCl_5$ were specifically cited. More recently Aubrey and Van Waser² reported the variation of n.m.r. chemical shifts, viscosity, and electrical conductivity with composition of mixtures of SbF₅ and SbCl₅. They were unable to obtain data in the composition region of 3.5 mol F/mol Sb because of solid formation and they also noted the generally complicated nature of the system.

From an attempted synthesis of the compound $Sb_2Cl_3F_7$ by mixing $SbCl_5$ and SbF_5 in a 3:7 mole ratio we have isolated by distillation (at *ca.* 0.25 Torr, liquid to solid) a crystalline solid having the composition $Sb_3Cl_4F_{11}$, which shows a slight melting at 69° followed by melting at 79—81°. Analytical data support this formulation.[†]

The crystal structure of Sb₃Cl₄F₁₁ has been solved by single-crystal X-ray diffraction techniques and the refinement is in progress. With no correction for absorption and anomalous scattering, the discrepancy factor R is presently 0.19 with isotropic atoms. The material crystallizes in the monoclinic system, a = 12.95, b = 10.53, c = 11.60 Å; $\beta = 96.4^{\circ}$, $D_{c} = 3.03$ g cm⁻³ for Z = 4; M = 716.0, space group $P2_1/n$. A total of 897 independent reflections were recorded on a Weissenberg camera for levels hol through h9l, and their intensities were measured by visual comparison against a set of standard intensities. The positions of the three antimony atoms were located from the threedimensional Patterson map and the light atoms were located from electron-density Fourier maps. The structure contains the tetrahedral $SbCl_4^+$ cation and the $Sb_2F_{11}^-$ ion in which both antimony atoms are octahedrally co-ordinated. The atomic arrangement is shown in the Figure. The two distorted octahedra are bridged by a fluoride ion which is 2.01(7) Å from each antimony. The Sb-F-Sb angle is

155(4)°. The average terminal Sb–F bond is 1.87(7) Å. The distances and the Sb–F–Sb angle agree well with those found by McRae, Peacock, and Russell in $[XeF]^+[Sb_2F_{11}]^{-.3}$. The average Sb–Cl bond is 2.22(3) Å. The shortest Sb(1) \cdots F distance is 3.0 Å, whilst the closest Sb(2) \cdots Cl and Sb(3) \cdots Cl approaches are 4.1 and 4.4 Å, respectively. The shortest Cl \cdots F distance is 2.9 Å.

FIGURE. Projection down [100].

This compound has been shown to be a powerful aromatic chlorinating agent, converting benzene into hexachlorobenzene.⁴ An investigation of the n.m.r. spectrum is in progress.

We thank the National Science Foundation for grants for the purchase of a Varian A-56/60 n.m.r. spectrometer, and to H.W.B.

(Received, 29th November 1971; Com. 2038.)

† Analysis of this material is difficult. A faulty analysis led to the assignment of an incorrect empirical formula early in the work.

- ¹ O. Ruff, Ber., 1909, 42, 4021.
- ² N. E. Aubrey and J. R. Van Wazer, J. Inorg. Nuclear Chem., 1965, 27, 1761.
- ⁸ V. M. McRae, R. D. Peacock, and D. R. Russell, Chem. Comm., 1969, 62.

⁴ W. K. Templeton, C. L. Bramlett, and H. B. Miller, presented at Southeastern Regional Meeting, American Chemical Society, Richmond, Virginia, winter 1969.