Hindered Rotation Around the C(9)-CH2Cl Bonds in Chloromethyltriptycenes

By N. M. **SERGEYEV,* KANDIL FAROUK ABDULLA,** and V. **R. SKVARCHENKO**

(NMR Laboratory, Chemical Department, Moscow State University, Moscow, U.S.S.R.)

Summary A strikingly high (ca. 16 kcal/mol) barrier to spectrum is observed for each aromatic ring (if A and B are rotation around the C(9)-CH₂Cl bond in chloromethyl-both α -protons, $\delta_{A} - \delta_{B} > \delta_{C} - \delta_{D}$) instea

As a rule, barriers to rotation around normal carboncarbon bonds in ethane-like molecules are below **5l** but the barrier can be as high as 10 kcal/mol for sterically crowded bonds, and so could be studied by dynamic n.m.r.

spectroscopy.^{2,3} We now report an extremely high barrier to rotation around the C(9)-CH₂Cl bond, in a study of the n.m.r. spectra of triptycenes (I) and (11) substituted at the bridgehead. The n.m.r. spectra **[60MHz;** tetrahydrofuran (THF) solvent; room temp.] of (I) and (IV) are shown in Figure 1a-d.

In the spectrum of triptycene itself (Figure la) the assignment of the high-field aromatic band to the β -H has been proved.^{4,5} The α -H signals are slightly broadened owing to weak spin-spin coupling between the *a-* and bridge protons. Compound (IV) gives a symmetrical **AA'BB'** spectrum (Figure lb). Protons on different aromatic rings in (I) - (IV) are probably not subject to mutual spin-spin coupling, and it is also reasonable to assume that (IV) has the same symmetry as triptycene (111).

The significant broadening in the low-field band in the spectrum of (11) (Figure lc), could be ascribed to the fact that the molecular symmetry is distorted; an **ABCD** type

triptycenes has been detected by temperature-dependent AA'BB' type spectrum for (III) and (IV). For (I), how-
n.m.r. spectroscopy.
 α -B_B λ α -B_B λ α -B_B λ α -B_B) instead of the
triptycenes has bee ever, as well as for (IV) , the symmetry is higher, and so the

FIGURE 1. 1H *N.m.r. spectra (60 MHz) of triptycene and its derivatives in THF at Yoom temperature: (a), compound* **(111)** ; *(b), compound* **(IV);** *(c), compound* **(11);** *(d), compound* **(I).**

spectrum should have become sharper. In reality, however, the broadening is even more pronounced and is observed at higher fields (in the aromatic region). Weak spin-spin coupling between the aromatic (especially *a)* protons and the ClCH, protons was ruled out by double resonance experiments.

We thought that the broadening was due to a dynamic process relative to the n.m.r. time scale and that it might be temperature-dependent. The spectrum of (I) becomes noticeably less diffuse even on moderate heating **(60°** in THF), and so was studied over a wider temperature interval, $+20$ to $+100$ °C, in hexamethylphosphoramide (Figure 2a-e). The spectrum clearly sharpens with

FIGURE 2. 1H *N.m.r. sfiectrum (100 MHz) of 9,lO-di(chloro-methyl)triptycene in hexamethylphosphoramide d various temperatures* $(\degree C)$: (*a*), $+30$; (*b*), $+40$; (*c*), $+50$; (*d*), $+60$; (*e*), $f(76)(f)$, $f(80)(g)$, $f(90)$.

temperature, the high-field region collapsing more rapidly. Above **90°,** a symmetrical AA'BB' spectrum, typical of 9,lO-disubstituted triptycenes *[e.g.* that for (IV) in Figure **11,** is observed.

We believe that at lower temperatures there exist rigid configurations (conformations) of **(I)** wherein the CH,C1 groups are arranged differently with respect to the aromatic rings. This should lead to the different shielding **of** the α -protons $(\delta_{\alpha} = \delta_{\alpha'} \neq \delta_{\alpha''};$ Figure 1a) and, to a lesser extent, of the β -protons.

The second $CHCl₂$ group in (I) is hindered with respect to the $C(9)$ -CH₂Cl bond, so that, even if the mutual orientation **of** the two chloromethyl groups is neglected, the non-equivalence of the protons will increase $(\delta_{\alpha} \neq \delta_{\alpha}, \neq \delta_{\alpha})$.[†]

One might, thus, expect to observe at least two sets **of** signals for the α -protons in the lower limit of the exchange process. In the spectra of (I) $(-30 °C; THF)$ (Figure 3)

FIGURE 3. ¹H *N.m.r. spectra* (100 *MHz*) of 9,10-di(chloromethyl)*triptycene in THF at various temperatures. The lowest-\$eld signal is attributed to an impurity. This signal can be used for control of resolution.*

the a-protons give rise to two sets of signals: at **7.7 [4H,** probably those nearest to C1 of the CH,Cl groups for a rigid conformation (V); α - and α' -H], and 7.1 p.p.m. [2H; α'' -H for conformation (V)]. The 7.1 p.p.m. signal is superimposed with the rather complex β -H signal at 7.0 p.p.m.

At $0-10$ °C (Figure 3) the α -proton signals coalesce. Similar temperature-dependent spectra were also observed for **(11)** (solutions in THF and hexamethylphosphoramide) . Quantitative study of the rate constants, *R,* for the

observed rotation is hindered by strong spin coupling for the systems under study. On the basis of the low-temperature spectra (Figure **3)** we believe that the low-limit ex-change takes place at - **²⁰OC** where a very slight broadening (but not collapse) **of** the multiplet structure is observed. This temperature can be assumed to be the temperature **of** stereochemical rigidity.[†] Owing to the uncertainty in determining T_r ($\pm 5^{\circ}$) only an approximate estimate of the free energy of activation for the rotation can be made. For both (I) and (II) $\Delta G(250 \text{ K}) = 16 \pm 2 \text{ kcal/mol}.$ Such a high barrier to internal rotation may be caused by

 $\updownarrow T_r$ is defined as the temperature at which $k = 1$ s⁻¹; in other words exchange broadening of *ca*. $1/\pi$ Hz (see also ref. 6) is observed.

[†] The conformers which differ in the mutual orientation of the chloromethyl groups of (I) cause the broadening of the CHCl₂ signal, followed by the coalescence at higher temperatures (Figure **2).**

Compounds (I) - (IV) were synthesised from anthracene

spatial hindrance characteristic of triptycene and its or derivatives and benzyne generated from benzenediderivatives. **azonium o-carboxylate;** satisfactory m.p.s were obtained.⁷

(Received, 4th October **1971;** *Corn.* **1728.)**

K. **A.** Pethrick and E. Wyn-Jones, *Quart. Rev.,* **1969,23, 301.**

- *G.* Binsch, *Topics Stereochem.,* **1968,** *3,* **97,** and references cited therein. H. Kessler, *Angew. Chem.,* **1970,** *82,* **237.**
-
-
-
- ⁴ M. A. Cooper, and S. L. Manatt, J. Amer. Chem. Soc., 1970, 92, 1605.
⁵ K. C. Kidd, G. Kotowycz, and T. Schaefer, *Canad. J. Chem.*, 1967, 45, 2155.
⁶ N. M. Sergeyev, G. I. Avramenko, A. V. Kislin, V. A. Korenevsky,

2. C., 1963, 85, 1549; W. Theilacker, U. Berger Brose, and K. H. Beyer, Ber., 1960, 93, 1658; V. R. Skvarchenko, K. F. Abdulla, Chem. Soc., 1963, 85, 1549; W. Theilacker, U. Berger Brose, and K. H. Beyer, Ber., 1960, 93, 1