Carbon-13 Nuclear Magnetic Resonance of 1,3,2-Dioxaphosphorinan-2-ones

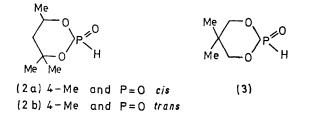
By A. A. BORISENKO,* N. M. SERGEYEV, E. YE. NIFANT'EV, and YU. A. USTYNYUK (N.M.R. Laboratory, Department of Chemistry, Moscow State University, Moscow, U.S.S.R.)

Summary The ${}^{3}J({}^{13}C...{}^{31}P)$ coupling constants in some 1,3,2-dioxaphosphorinan-2-ones have been shown to depend upon the POCC dihedral angle and the orientation of the P...O bond.

DETERMINATION of the ${}^{13}C{}^{-31}P$ coupling constants of organophosphorus compounds is useful for structural assignments.¹ However, the dependence of ${}^{13}C{}^{-31}P$ coupling

constants on the stereochemistry has not been previously reported.

The proton decoupled ¹³C n.m.r. spectra of a number of 1,3,2-dioxaphosphorinan-2-ones are given in Tables 1 and 2.


It has been shown by n.m.r. and magnetic dipole data² that in (1a) the P=O and Me groups are *cis* and equatorial and that the molecule is in the chair form, and in (1b) the P=O and Me groups are *trans* and the P=O group is axial.

¹³ C chemical shifts (relative to Me ₄ Si), $\pm 0.2 p.p.m$.								
Compounds	C-4	C-5	C-6	4-Me ^{eq}	5-Me ^{ax}	5-Me ^{eq}	6-Meax	6-Me ^{eq}
(1a)	74.4	33.7	65.9	22.9				
(1b)	74.8	32.7	64.6	$22 \cdot 4$				
(2a)	71.8	45.1	83.3	$32 \cdot 3$			27.0	32.6
(2b)	$73 \cdot 1$	44 ·1	82.7	23.3			28.7	31.8
(3)	76 ·6	32.5	76.6		22.2	20.5		
				TABLE 2				
¹³ C– ³¹ P coupling constants, ± 0.2 Hz								
	^{2}J	3 Г	²J	3.1	4 J	4 J	3 Г	3 J
Compounds	Č-4	³ <i>J</i> C-5	Č-6	4-Me ^{eq}	5-Meax	5-Me ^{eq}	³ Ј 6-Ме ^{ах}	6-Me ^{eq}
(la)	$5 \cdot 9$	6.1	5.3	8.9				
(1b)	$7 \cdot 2$	9.9	6.8	4.8				
(2a)	5.3	5.9	7.1	9.1			1.8	5.9
(2b)	6.4	11.0	7.1	6.0			<0.6	4.5
(3)	$5 \cdot 6$	6.3	$5 \cdot 6$		<0.3	1.0		
м	-			7	he 5-meth	vl signals	in the spe	etrum of a

TABLE 1

(1a) Me and P=0cis (1b) Me and P=O trans

The configurations of (2a) and (2b) have similarly been determined.

The signals in the ¹³C spectra were assigned on the basis of the general trends for 13C chemical shifts3 and by offresonance partial proton decoupling.

The 5-methyl signals in the spectrum of compound (3)were assigned by selective ¹³C-{¹H} decoupling.⁴

Tables 1 and 2 show the difference between the ¹³C n.m.r. data of isomers (1a) and (1b) and (2a) and (2b), especially the ¹³C--³¹P vicinal coupling constants, where the effect of the spatial arrangement of the P=O bond can be observed. Similar differences have recently been observed for cis- and trans-2-methyl-5-t-butyl-1,3,2-dioxaphosphorinans.5 The $^{13}CH_3(6)-^{31}P$ constants demonstrate the dependence of the ¹³C-³¹P vicinal constants on the POCC dihedral angle. The constants are much higher for the equatorial methyls (dihedral angle, ca. 180°) than they are for the axial methyl (dihedral angle $ca. 60^{\circ}$). This resembles the dependence of the ³¹P--H vicinal constants upon the dihedral angle in 1,3,2dioxaphosphorinans.6

For compound (3), it is noteworthy that the long-range coupling constant ${}^{4}J({}^{13}C...{}^{31}P)$ is observed only for the carbon of the equatorial methyl. Thus, as with the H-H coupling constants, the ¹³C-³¹P long-range coupling constants are greater when the interacting nuclei are W arranged (W rule).

(Received, 18th January 1972; Com. 073.)

- ¹G. A. Gray, J. Amer. Chem. Soc., 1971, 93, 2132 and references therein.
- ² E. Ye. Nifant'ev, A. A. Borisenko, I. S. Nasonovsky, and E. I. Matrosov, Dokl. Acad. Nauk U.S.S.R., 1971, 196, 121.
 ³ E. F. Mooney and P. H. Winson, Ann. Rev. N.M.R. Spectroscopy, 1969, 2, 153.
 ⁴ K. D. Bartle, R. S. Edmundson, and D. W. Jones, Tetrahedron, 1967, 23, 1701.
 ⁵ W. G. Bentrude, K. C. Yee, R. D. Bertrand, and D. M. Grant, J. Amer. Chem. Soc., 1971, 93, 797.
 ⁶ D. W. White and J. G. Verkade, J. Magn. Resonance, 1970, 3, 111.