An Unusual Synthesis of Ergosterol Acetate Peroxide

By D. H. R. **BARTON,*** *G.* **LECLERC,** P. D. **MAGNUS,** and I. D. **MENZIES** (Chemistry Department, Imperial College, South Kensington, London S.W.7)

Summary Trityl tetrafluoroborate and tris-(p-bromophenyl) aminium cation-radical are exceptionally effective catalysts for oxygenation of ergosteryl acetate (I; $R=Ac$) to the peroxide (II; $R=Ac$); the trityl cation catalysed reaction is a photo-oxygenation, whilst the aminium cation-radical catalysed reaction is thermal.

tative yield. Ergosteryl benzoate $(I; R = Bz)$ similarly gave the benzoate $(II; R=Bz)$.

Further investigation showed that the acetate $(I; R = Ac)$ **(100** mg) in dry dichloromethane with a catalytic amount **(10** mg) of trityl tetrafluoroborate at **-78** "C with exposure to air and laboratory lighting gave the peroxide $(II; R = Ac)$ quantitatively in **2-75** h. Irradiation of the above system with a tungsten lamp (500 W) gave the peroxide (II; R=Ac) in **30** min. Under pure oxygen **(1-03** mol uptake) peroxide (11; R=Ac) formation was complete in **10** min **at** -78 °C, even on a preparative scale $(>1 g)$. The trityl cation was isolated as tritylmethanol **(86%)** from aqueous

DURING studies related to the use of trityl cation for the deprotection of masked steroidal alcohols1 we treated ergosterol acetate with trityl tetrafluoroborate **(0.3** equiv.) in dichloromethane without precautions to exclude oxygen. At -78 °C the peroxide² (II; R=Ac) was formed in quanti-

work-up. Photo-oxygenation at -15 °C, 0 °C, or room temperature did not give clean reactions. Only at -15 °C was the peroxide formed in good yield.

R_O

gH₁₇

When trityl cation in dichloromethane at -78 °C in the presence of oxygen was irradiated (tungsten lamp) in the absence of ergosteryl acetate, no oxygen was consumed *(cf.* ref. **3).**

RO RO

 (\mathbf{III})

 Ph_3 C-N=N-CPh₃

 (Σ)

SCHEME

 $Hydrazotriphenylmethane⁵$ on treatment with bromine at -78 °C gave azotriphenylmethane (V) which decomposed to nitrogen and triphenylmethyl radicals at -20 °C.

TABLE

9H17

C₉H₁₇

 \Box

 $(\underline{L} \underline{V})$

 $X^-N^+(C_6H_LBr-p)_3$

 (\underline{W})

To compare conventional singlet oxygen photo-oxygenation* and the trityl cation system the experiments summarised in the Table were carried out. The rate ratio $k(I; R=Ac)/k(III; R=Ac)$ was *ca*. 6000 for the trityl system whereas the ratio for the eosin system was *ca.* **3.3.** This dramatic difference in relative reactivity appears to discount the trityl cation acting merely as a triplet to singlet oxygen sensitiser.

Ergosteryl acetate in dichloromethane $(-78 \degree C)$ containing trityl tetrafluoroborate was oxygenated in the light (tungsten lamp). The formation of the peroxide **(11;** $R=Ac$) terminated at once in darkness but resumed on irradiation. This would appear to invalidate a photochemically initiated radical chain mechanism. Oxygenation of (I; R=Ac) with trityl tetrafluoroborate *in the dark* proceeded if diphenylpicrylhydrazyl was present in slightly greater amounts than trityl tetrafluoroborate to give the peroxide (II; R=Ac) quantitatively. Oxygenation of

Azotriphenylmethane (V) in dichloromethane at -78 °C with ergosteryl acetate $(I; R = Ac)$ was oxygenated under irradiation. Warming the mixture to -15 °C gave no peroxide $(II; R = Ac)$, only triphenylmethyl peroxide.⁶ Trityl radicals are not, therefore, the catalytic oxygenation species.

Tris-(p-bromopheny1)aminium hexachloroantimonate' (VI; $X = SbCl₆$) catalysed the formation of ergosterol acetate peroxide (II; $R = Ac$) *in the dark* at -78 °C. Indeed, $tris-(p-bromophenyl)$ aminium fluoroborate \dagger (VI; $X=BF_4$) (10 mg) in dichloromethane catalysed the oxygenation of ergosteryl acetate (I ; R=Ac) **(100** mg) in a *dark* reaction to give quantitatively the peroxide (II; $R = Ac$) (5 min). Higher temperatures did not give clean products. Lumisteryl acetate (III; $R = Ac$) did not react under these conditions either at -78 °C or at room temperature.

To explain these reactions we discount singlet oxygen because of the comparative rate data (Table). In the dark

Prepared from tribromotriphenylamine, silver tetrafluoroborate, and iodine at -30 $°C$.⁷ All new compounds were characterised **by** the **usual** spectroscopic techniques and microanalysis.

reactions there would appear to be no way in which singlet oxygen could be generated.

The Scheme shows a possible mechanism for trityl tetrafluoroborate catalysed photo-oxygenation.

The dark reaction with the aminium cation-radical follows **a** similar course, a reversible adduct with oxygen being postulated. There is the alternative that the aminium cation-radical oxidises the diene *to* a cation-radical (in the manner suggested for the reaction with certain styrenes),⁷ which then proceeds to the peroxide $(II; R = Ac)$. But this would not explain why lumisteryl acetate **(111;** R=Ac)

gives only very slow reactions. A bulky oxygen delivering species $(Ar₃NO₂)$ ⁺ might impart the observed selectivity.

a-Terpinene on exposure to oxygen-trityl cation in dichloromethane at -78 °C gave rapidly ascaridole⁸ in high yield. Similar treatment of tetraphenylfuran gave quantitatively **cis-dibenzoyldiphenylethylene.**

These experiments demonstrate a previously unknown reaction, namely the insertion of triplet oxygen into certain dienes under exceptionally mild conditions, in excellent yields.

(Received, 3rd February **1972;** *Corn.* **165.)**

¹D. H. R. Barton, P. D. Magnus, *G.* Smith, and D. Zurr, *Chem. Comm.,* **1971, 861;** D. H. **R.** Barton, P. D. Magnus, G. Streckert, and D. Zurr, *ibid.,* **p. 1109;** D. H. **R.** Barton, P. D. Magnus, *G.* Smith, G. Streckert, and D. Zurr, *J.C.S. Perkin I,* **1972, 542.**

a V. Prelog and P. Wieland, *Helv. Chim. Ada,* **1947,** *30,* **1028.**

³E. E. vanTamelen and T. **M.** Cole, jun., *J. Amer. Chem. Soc.,* **1971,93,6158;** D. **M.** Allenand E. D. Owen, *Chem. Comm.,* **1971, 848. ⁴K.** Gollnick and G. 0. Schenk, 'Oxygen as a Dienophile', in 1,4-Cycloaddition Reactions : The Diels-Alder Reaction in Heterocyclic Syntheses, ed. J. Hamer, Academic Press, New York, **1967, p. 255; C.** S. Foote, *Accounts Chew. Res.,* **1968, 1, 104;** D. **R.** Kearns, *Chenr. Rev.,* **1971, 71, 395;** K. Gollnick, *Adv. Photochena.,* **1968, 6, 1.**

* H. Wieland, *Bey.,* **1909, 42, 3020.**

***M.** Gomberg, *Bey.,* **1900, 33, 3150;** *Chem. Rev.,* **1924. 1, 91.**

*⁷*F. A. Bell, A. Ledwith, and D. C. Sherrington, *J. Chem. Soc.(C),* **1969, 2719.** G. 0. Schenk and K. Ziegler, *Naturwiss.,* **1944,** *32,* **157.**

G. 0. Schenk, *2. Electrochem.,* **1960, 64, 997.**