A Novel Dimeric Platinum(1) Complex

By F. GLOCKLING* and R. J. I. POLLOCK

(Department of Inorganic Chemistry, The Queen's University, Belfast BT9 5AG)

Summary Reaction of [(Ph₂P)₂CH₂]PtCl₂ with (Me₃Si)₂Hg yields the diamagnetic complex, [(Ph₂P)₂CH₂]₂Pt₂Cl₂, with chlorine as bridging ligand and the metal in the formal oxidation state of +1.

BISTRIMETHYLSILYLMERCURY has found extensive use in forming Pt-SiMe3 complexes,1 and the reaction of [(Ph₂P)₂CH₂]PtCl₂ with an excess of (Me₃Si)₂Hg yields the expected product, [(Ph2P)2CH2]Pt(SiMe3)2. However, if the platinum halide complex is present in excess the reaction takes a different course giving the novel platinum(I) dimer [(Ph₂P)₂CH₂]₂Pt₂Cl₂ (I), probably formed as shown in the Scheme.

The yellow crystalline complex (I) has been characterised by elemental analysis and the presence of a molecular ion centred at 1229 a.m.u. in its mass spectrum, the ion pattern being consistent with that calculated for a framework of Pt₂Cl₂. Its i.r. spectrum contained a medium band at 249 cm⁻¹ assignable to bridging v(Pt-Cl), terminal v(Pt-Cl)being absent. The ¹H n.m.r. spectrum showed only phenyl and methylene protons in the correct ratio, the CH₂ resonance appearing as 9 lines (1:2:1:4:8:4:1:2:1) with ³J (Pt-H) 56.6 and ${}^{2}J$ (P-H) 3.8 Hz. The compound is diamagnetic and produced no e.s.r. signal.

Complex (I) is remarkably stable, m.p. 291°(decomp.) and is unaffected by air over 2 months. The Pt-Cl bridge was incompletely cleaved by excess of the phosphine over 24 h in benzene under reflux.

C₆H₆,80* (chelate)(Me₃Si)ClPt+Me₃SiCl+Hg (chelate)Pt + Me₃SiCl (chelate)PtCl₂ Ph₂ Ph₂ Ph2 Ph₂ (1)SCHEME

(chelate)PtCl₂ + (Me₃Si)₂Hg

The structure of (I) involves either two d^9 Pt atoms with sufficient Pt-Pt interaction to make the complex diamagnetic, or two Pt atoms in different oxidation states. During the course of this work a related palladium(I) complex was reported.2

(Received, 31st January 1972; Com. 141.)

¹ A. F. Clemmit and F. Glockling, J. Chem. Soc. (A), 1971, 1164. ² S. Otsuka, Y. Tatsuno, and K. Ataka, J. Amer. Chem. Soc., 1971, 93, 6705.