## Structure of the B<sub>10</sub>H<sub>13</sub><sup>-</sup> Ion

By L. G. SNEDDON, J. C. HUFFMAN,\* R. O. SCHAEFFER, and W. E. STREIB

(Department of Chemistry, Indiana University, Bloomington, Indiana 47401)

Summary Three dimensional X-ray data collected at -170 °C show that the  $B_{10}H_{13}$ -ion has the same structure as  $B_{10}H_{14}$ , with one bridging hydrogen removed and a shortening of the corresponding boron-boron bond to 1.65 Å.

OF the known boron hydrides, one of the few structures which has remained in doubt is that of the  $B_{10}H_{13}^-$  ion discovered<sup>1</sup> in 1958. Several structures have been proposed, based on various bonding theories<sup>2</sup> and spectral data.<sup>3</sup> The only previous crystallographic work was with etherates of the sodium salt<sup>4</sup> and indicated high thermal motion and/or disorder at ambient conditions.

Preliminary work on samples of the triethylammonium salt indicated excessive thermal motion and radiation damage at 22 °C, as crystals generally decomposed after one day of exposure to X-rays. A single crystal was mounted on a Picker automated diffractometer equipped with a highly oriented graphite monochromator and cooled to -170 °C by means of a nitrogen vapour coldstream.<sup>5</sup> Careful searching of a limited hemisphere indicated a triclinic unit cell, in agreement with the findings of preliminary film work. Cell dimensions at -170 °C are a = 7.200(4), b = 14.270(10), c = 8.452(5) Å,  $\alpha = 82.40(2),$  $\beta = 104.28(5),$  and  $\gamma = 112.73(3)^{\circ}$ , giving a reasonable value of  $D_{\rm C} = 0.957$  g cm<sup>-3</sup> for Z = 2.

A complete sphere of data was collected to  $\sin \theta / \lambda 0.650$ and averaged to obtain the final set of 1349 intensities greater than the standard error, based on counting statistics, which was used in the refinement. Statistical tests indicated a centrosymmetric structure, and the space group  $P\bar{1}$  was assigned. All non-hydrogen atoms were located by direct methods, and the hydrogen atoms by difference Fourier methods. Anisotropic least-squares refinement of the structure gave a final residual of 0.048.

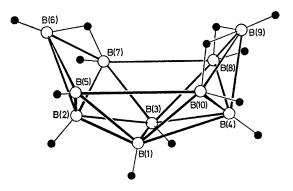



FIGURE. The structure of the  $B_{10}H_{13}^-$  ion. Boron-boron distances which differ by more than 0.02 Å from the corresponding distance in  $B_{10}H_{14}$  are: B(5)-B(6) = 1.65, B(7)-B(8) = 2.04, and B(5)-B(10) = 1.86 Å.

The structure, as shown in the Figure, is that of  $B_{10}H_{14}$  with the B(5)-B(6) bridging hydrogen removed. Distances in the anion are equivalent to those<sup>6</sup> in  $B_{10}H_{14}$  with the exception of those listed in the Figure, which differed by

more than 0.02 Å. It is interesting to note the B(5)-B(6) distance of 1.65 Å is one of the shortest boron-boron bonds reported.7<sup>†</sup>

The authors thank Mr. A. R. Siedle for preparation of the samples.

(Received, 28th February 1972; Com. 324.)

 $\dagger$  The boron-boron distance of 1.60 in  $B_{\theta}H_{10}$  (ref. 7) was found to be 1.63 Å in a recent reinvestigation (J. C. Huffman, L. G. Sneddon, R. O. Schaeffer, and W. E. Streib, to be published).

<sup>1</sup> W. V. Hough and L. J. Edwards, (1958) Symposium on 'Borax to Boranes,' 133rd American Chemical Society Meeting, San

<sup>1</sup> (a) W. H. Eberhardt, B. Crawford, and W. N. Lipscomb, J. Chem. Phys., 1954, 22, 989; (b) R. Hoffman and W. N. Lipscomb, *ibid.*, 1962, 37, 2872; (c) I. R. Epstein and W. N. Lipscomb, *Inorg. Chem.*, 1971, 10, 1921.
<sup>3</sup> A. R. Siedle, G. M. Bodner, and L. J. Todd, J. Inorg. Nuclear Chem., 1971, 33, 3671.

<sup>4</sup> H. G. Normant, Acta Cryst., 1959, 12, 695.

<sup>5</sup> J. C. Huffman, J. M. Mueller, and W. E. Streib, unpublished work. <sup>6</sup> Von R. Brill, H. Detrich, and H. Dierks, *Acta Cryst.*, 1971, **B27**, 2003.

<sup>7</sup> F. L. Hirschfelt, K. Eriks, R. E. Dickerson, E. L. Lippert, jun., and W. N. Lipscomb, J. Chem. Phys., 1958, 28, 56.