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Rhodium(1) Catalysed Rearrangements of Vinyl Epoxides and Oxetans

By G. Apawmes, C. Bisy, and R. GrigG*
(Department of Chemistry, University of Nottingham, Nottingham NGT 2RD)

Summary RhlI catalysed rearrangements of vinyl epoxides
to «f-unsaturated aldehydes and cleavage of oxetans
to olefins and aldehydes are described and the reactions
interpreted in terms of Rh! acting as a weak Lewis acid.

ReceENTLY,! we described some rearrangements of cyclo-
olefinic epoxides in the presence of [Rh(CO),Cl],. Some
further studies are now described. The epoxide (la) re-
arranged slowly in the cold in the presence of [IRh(CO),Cl]},
into the aldehyde (2a)3. Similarly (1b) gave (2b) and (lc)
gave a 2:3 mixture of cis- and trams-crotonaldehyde.?
Styrene oxide reacted at room temperature but gave mainly
polymer with only a trace amount of an aldehyde. The
relative rates of reaction of the epoxides in the presence of
Rhl [styrene oxide > (1a) > (1¢) > (1b)] suggests these
reactions have carbonium ion character and they are clearly
related to the Lewis acid catalysed rearrangements of more
complex vinyl epoxides.# Ring opening of (1a—c) by Rhl
could give the normal Lewis-acid dipolar intermediate (3)
but a 7r-allyl intermediate might also be involved. Evidence
for the intervention of a ﬁy-unsaturated aldehyde was
obtained by n.m.r. monitoring of the rearrangement of (1a)
at 80° in C4Dy when the doublet aldehyde signal (v 0-65,
J 1-:3 Hz) of (4) was observed. It was also apparent that
the geometrical isomer of (2a) was being produced at a
faster rate than (2a) suggesting that (2a) was not directly
produced from (4) but arose from its geometrical isomer.
The By-unsaturated aldehyde (4) was also observed using
(PhCN),PdCl, as the catalyst but a black precipitate, pre-
sumably metallic palladium, was also produced suggesting
acid catalysis may have been responsible.f The conversion
of (4) into the corresponding «fS-unsaturated aldehyde
could involve a metal catalysed 1,3-hydride shift,? or a
Lewis acid catalysed conjugation via the dienol or its metal
complexed equivalent.

The cleavage of an oxetan into an olefin and a carbonyl
compound utilising transition metals has also been studied.
Oxetan itself does not fragment to ethylene and formalde-
hyde (polymer formation is preferred) but a number of
substituted oxetans are readily cleaved by catalytic amounts
of [Rh(CO),Cl},. In the presence of RhI the oxetan (5)% is
cleaved quantitatively to (6) (5h at 35°). Similarly (7)7
gives furan and benzaldehyde (3 h at 35°). Both these re-
actions are faster when catalysed by CF,CO,H. How-
ever, [Rh(CO),Cl], gives a cleaner product than CF,CO,H
for a number of tetracyclic oxetans.} E.g. (8)8 on heating at
82° for 18 h in the presence of a catalytic amount of Rhl
gave the endo-aldehyde (9) (829%).§ Similarly the oxetans

(10a)® and (10b, c¢) gave the corresponding endo-aldehydes
(11a—c) on heating (85—110°, 2—20 h) in the presence of
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RhI (70—909,).§ Previous attempts to cleave (10a) with
perchloric acid in methanol gave a mixture of the acetal of

T Rearrangements catalysed by traces of HCl occur at a much slower rate. Reactions carried out under dry conditions showed no

decrease in rate of rearrangement.

However, HRh(CO),Cl, cannot be ruled out as the catalytically active species. The isomeric di-

hydrofuran is not an intermediate since 2,5-dihydrohydrofuran is unaffected by Rh! at 80°.

1 All new compounds gave satisfactory analytical and spectral data. The oxetans (10b, c), were prepared by photocyclisation of
the appropriate ketones, which in turn were prepared by Diels—-Alder reactions.

§ Yields reported are estimated by n.m.r. Isolated yields were somewhat lower, varying according to the reaction scale, because of

polymerisation on work-up.
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(11a) and an olefinic alcohol.? The direction of cleavage
of oxetans (5), (8), and (10a—<c) are correctly predicted by
assuming co-ordination of the rhodium to the ether oxygen
atom followed by cleavage to give the most stable car-
bonium ion. The 1,4-dipoles could then collapse directly
to the olefinic aldehydes or in the case of (10a—<c) to another
intermediate?® capable of transforming to the olefinic alde-
hydes. Clearly in (7) attack on the more nucleophilic
enol-ether is favoured. Other examples of cleavage of
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oxetanes to carbonyl compounds and olefins by Lewis acids
have been reported.1®

Our results with Rh!I and strained oxygen heterocycles
complement recent work!! on strained alicyclic systems in
which Lewis acid catalysis by various metal ions was dis-
cussed. We have not detected any acyl rhodium inter-
mediates!2 in these rearrangements.
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